 EAGLE88(tm)

USER

MANUAL
VERSION

7.04

COPYRIGHT NOTICE

All rights to this publication are reserved. Readers are permitted to reproduce, store in a retrieval system, or transmit this document for internal company/personal use under the condition that it is not for profit.

Any other usage requires prior permission from Systech Software Products, Inc., 256 Buli Lane Boling​brook, Illinois 60490, (630) 759-4805.

Systech reserves the right to make changes or improvements to the software and documentation herein described at any time and without notice.

Section A – TABLE OF CONTENTS

Table of Contents

Section A – TABLE OF CONTENTS
3

COMMAND CROSS REFERENCE
7

TOPIC CROSS REFERENCE (partial highlights)
8

RESERVED VARIABLES
9

PREFACE
10

10

Section B - INTRODUCTION
10

CONTROL:
10

FILE/DATABASE ACCESS:
10

DATA MANIPULATION:
11

SPECIAL FEATURES/REPORT FORMATS:
11

PROCESSING RULES
12

SUMMARY OF VERBS
13

SUMMARY OF DB2 VERBS
15

SUMMARY OF IDMS VERBS
15

Section C - EXPLANATION OF COMMANDS
16

SYNTAX EXPLANATION
16

SUMMARY OF COMMANDS AVAILABLE
17

RESERVED VARIABLE LIST
23

ACCEPT
24

ADD
25

CALL
27

COMMENT CARDS
28

COMMIT
29

COMPARE
30

COMPRESS
31

COMPSRC
32

CVTBIN
34

CVTCHAR
35

CVTDEC
36

DB2-CONNECT
37

DB2-DISCONNECT
38

DECODE
39

DECOMPRESS
40

DEFAREA
41

DEFINES
42

DELETE
44

DIVIDE
45

DLILINK / ENTRY
46

DUMPV and DUMP
48

DUMPH
49

DYNALLOC
50

DYNCLOSE
55

DYNOPEN
56

EDIT
57

ENCODE
58

ERASE
59

EXEC SQL END-EXEC
60

EXHIBIT
61

FIND
62

FINISH
64

GET
65

GOTO
66

IDMS-CONNECT
67

IDMS-DISCONNECT
68

IDMS-IF
69

IDMS-RETURN
70

IF
71

IFX
73

KEEP
74

LOADSRC
75

MASKAND
76

MASKOR
77

MODIFY
78

MOVE
79

MOVEN
80

MOVEX
81

MULTIPLE
82

OBTAIN
83

PACK
86

PERFORM
87

PRINT
88

READ
89

READLIB
90

READPAN
91

READPDS
92

READY
93

RESTART
94

RETURN
95

ROLLBACK
96

SCAN
97

SCANSTEP
98

SCANTEST
99

SPELL
100

STORE
101

STRING
102

SUBTRACT
104

SYNC
105

UNPACK
106

UNSTRING
107

WRITE
108

WRITEPDS
109

XREF
110

XREFDSN
111

 Section D - APPLICATION SAMPLES
112

Sample 1 COPY FILE
115

Sample 2 COPY AND REBLOCK FILES
116

Sample 3 COPY AND CHANGE RECORD SIZE
117

Sample 4 COPY MULTIPLE FILES
118

Sample 5 COPY AND CHANGE RECORD FORMAT VB TO FB
119

Sample 6 COPY AND CHANGE RECORD FORMAT FB TO VB
120

Sample 7 COPY ONLY SELECTED RECORDS
121

Sample 8 COPY AND REMOVE SELECTED RECORDS
122

Sample 9 COPY AND REMOVE SELECTED RECORDS
123

Sample 10 COPY AND MODIFY DATA IN RECORDS
124

Sample 11 COPY AND MODIFY DATA IN SELECTED RECORDS
125

Sample 12 COPY WITH LIMIT COUNT
126

Sample 13 PRINT A FILE
127

Sample 14 RECORD VERTICAL DUMP
128

Sample 15 RECORD HORIZONTAL DUMP
129

Sample 16 SELECTIVELY PRINT, DUMP, AND COPY FILES
130

Sample 17 COMPARE TEST FILES BEFORE AND AFTER
131

Sample 18 SYNC FILES TO GET MATCH TEST DATA
132

Sample 19 SYNC FILES FOR A MERGE
133

Sample 20 SYNC FILES TO MODIFY DATA
134

Sample 21 SYNC FILES TO REMOVE UNMATCHED RECORDS
135

Sample 22 SYNC FILES TO PRINT MATCHED SETS
136

Sample 23 SYNC FILES TO COMPARE RECORDS
137

Sample 24 GENERATE TEST DATA RECORDS
138

Sample 25 GENERATE CONTROL CARDS FROM A REPORT
139

Sample 26 SCAN A FILE FOR VALUES IN ANY POSITION
140

Sample 27 SCAN/REPLACE DATA ON A FILE
141

Sample 28 SCAN PROCLIB FOR A PROGRAM
142

Sample 29 SCAN/REPLACE A TEST DATA LIBRARY
143

Sample 30 CROSS REFERENCE AN APPLICATION
144

Sample 31 COVERT FIELDS FROM BINARY TO CHARACTER
145

Sample 32 READ AND REMOVE DUPLICATE RECORDS
146

Sample 33 ADD FIELDS INTO THE CENTER OF A RECORD
147

Sample 34 SYNC MASTER AND PATCH FILE TO MODIFY REC
148

Sample 35 COMPARE MASTER RECORDS ON A CONTROL LIST
149

Sample 36 COMPARE BUT EXCLUDE DATE
150

Sample 37 COMPARE SELECTED FIELDS
151

Sample 38 COMPARE QUANTITY HISTORY TRACE
152

Sample 39 PRINT ALL REFERENCES TO A FILE / PROGRAM
153

Sample 40 SCAN PROCLIB FOR FILE, PRINTING PGM & PROC
154

Sample 41 READ SEQUENTIAL FILE AND CREATE PDS MEMBERS
155

Sample 42 MERGE ALL MEMBERS TO A SINGLE MEMBER
156

Sample 43 INSERT A /*ROUTE CARD IN EACH MEMBER
157

Sample 44 DELETE A /*ROUTE CARD IN EACH MEMBER
158

Sample 45 MASS JCL SCAN
159

Sample 46 COMPARE CONTROL CARD LIBS
160

Sample 47 SEND JCL TO PRINTER WITH PAGE EJECTS
161

Sample 48 DISPLAY ADDRESS TEXT
162

Sample 49 CHECK SPELLING ON TEXT FILE
163

Sample 50 SOURCE CODE COMPARE
164

Sample 51 LIBRARY SOURCE CODE COMPARE
165

Sample 52 MASS COMPILE PROCESSING
167

Sample 53 CALL USER MODULES FOR PROCESSING
168

Sample 54 RESET NUMERIC FIELDS
169

Sample 55 TALLY NUMERIC FIELDS
170

Sample 56 CONVERT NUMERIC FIELDS
171

Sample 57 IMS DATA BASE ACCESS
172

Sample 58 CROSS REFERENCE AN APPLICATION ON PANVALET
174

Sample 59 SCAN LIBRARIAN FILE FOR VALUES
175

Sample 60 SCAN/REPLACE DATA ON A FILE
176

Sample 61 BUILD A SYSTEM DATASET NAME CROSS REFERENCE
177

Sample 62 MASTER FILE WITH VARIABLE TRAILERS
178

Sample 63 COPY ONLY SELECTED RECORDS
179

Sample 64 ENCRYPT SOURCE CODE FOR SECURITY
180

Sample 65 DECODE SOURCE CODE FROM SAMPLE 64
181

Sample 66 ENCODE AN INDIVIDUAL FIELD
182

Sample 67 FB TO A COMPUTED VB RECORD SIZE
183

Sample 68 COMPRESS A FILE
184

Sample 69 DECOMPRESS A SELECTED RECORD
185

Sample 70 STRING MEMBER NAMES TO BUILD LINKAGE CARDS
186

Sample 71 UNSTRING NAME AND ADDRESS INFORMATION
187

Sample 72 IDMS ADS/O SOURCE CODE SCAN
188

Sample 73 IDMS RECORD AREA SWEEP PRINTS
190

Sample 74 IDMS ADS/O LOAD SIZE, MAP DATE AND GEN DATE PRINT
191

Sample 75 DB2 TABLE EXTRACT AND PRINT
193

Sample 76 DB2 EXTRACT AND DELETE SELECTED ROWS
194

Sample 72 DB2 EXTRACT, UPDATE, AND COMPARE ROWS
195

Sample 78 IMS DATA BASE PRINT AND DUMP
196

Sample 79 DB2 PARTIAL TABLE DELETE AND RELOAD
197

Sample 80 CONVERT IDMS RECORDS TO DB2 ROWS
198

Sample 81 SYNC PATCH FILE TO MASS UPDATE DB2 ROWS
200

Sample 82 PATCH CA-DATACOM DATA BASE AND ISSUE
201

Sample 83 LIST IMS SEGMENTS WITH BAD DATES
204

Sample 84 IMS TO DB2 DATA BASE TRANSFER
206

Sample 85 LOAD CA-DATACOM TO A DB2 DATA BASE
207

Sample 86 DYNAMIC FILE CREATION FROM A LIST
209

Sample 87 DYNAMIC FILE CREATION FROM TRANSACTIONS
211

Sample 88 SYNC FILES TO MODIFY DATA - ONE TO MANY
213

Section E - ERROR MESSAGES
214

Section F - TUTORIAL LESSONS
234

Lesson 1, Getting started
235

Lesson 2, File prints
237

Lesson 3, Modifying records
239

Lesson 4, File modification from another file
241

Lesson 5, File synchronization
243

Lesson 6, File scanning
247

Lesson 7, Library processing
249

Lesson 8, Xref source code
252

Lesson 9, File compares
253

Lesson 10, Synchronized file compares
254

Lesson 11, Library compares
255

Lesson 12, Formatting special requests
257

Section G - INSTALLATION GUIDE
259

Section H – SAMPLE REPORTS
270

EAGLER01 – COMMAND EDIT LIST
270

EAGLER02 – FILE PRINT LIST
270

EAGLER03 – VERTICAL DUMP LIST
270

EAGLER04 – HORIZONTAL DUMP LIST
271

EAGLER05 – COMPARE LIST
271

EAGLER06 – COMPARE SOURCE CODE
272

EAGLER07 - CROSS REFERENCE
272

EAGLER08 – STATISTICS LIST
272

COMMAND CROSS REFERENCE
ACCEPT
see cmd section (idms)

ADD

53,55,57,62,64,65,72,74,77,78

BIND

72,73,74,80

CALL

53,57,66,78,82,83,84,85

COMPSRC
51

COMMENTS
(all samples)

COMMIT
see cmd section (idms)

COMPARE
17,23,35,36,37,38,46,77

COMPRESS
68

CVTBIN
56,62,64,65,80,82

CVTDEC
56,72,77

CVTCHAR
31,56,74

DB2-CONNECT
75,76,77,79,81,84,85

DECODE
65,66

DEFAREA
72,73,74,75,76,77,78,79,80,81,82,83,84,85

DEFINES
(all samples)

DECOMPRESS 69

DB2-DISCONNECT 75,76,77,79,81,84,85

DELETE
8,20,30,44,46,58

DIVIDE
55

DLILINK
57,78,83,84

DUMP

14,73,78,81

DUMPV
16

DUMPH
15

DYNALLOC
86,87

DYNCLOSE
86,87

DYNOPEN
86,87

EDIT

52

ENCODE
64,66

ENTRY
57,78

ERASE
see cmd section (idms)

EXHIBIT
48,53,55,57,71,72.73,75,77,80,81,82,86,87

EXEC SQL END-EXEC 75,76,77,79,80,81,84,85

FIND

72,74

FINISH
72,73,84,80

GET

see cmd section (idms)

IDMS-CONNECT
 see cmd section

IDMS-DISCONNECT see cmd section

IDMS-IF
see cmd section

IDMS-RETURN
see cmd section

IF

7,8,9,11,12,13,14,15,16,18,20,21,

24,27,30,32,34,35,37,39,40,41,43,44,45,

46,47,51,52,53,54,55,57,58,60,62,69,78,80

IFX

63

GOTO

(all samples)

LOADSRC
50,51,

KEEP

see cmd section (idms)

MASKAND
53

MASKOR
56

MODIFY
see cmd section (idms)

MOVE

5,6,10,11,20,24,25,27,29,32,33,34,

36,37,38,39,40,41,42,43,45,47,51,54,60,

62,64,65,67,70,72,80

MOVEN
56

MOVEX
72,73,74,80

MULTIPLY
55

PACK

56

PERFORM
7,37,46,62,72,82

PRINT

7,13,16,22,27,29,39,60,72,73,79

READ

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

25,26,27,31,32,33,41,48,52,54,55,56,62,63,

66,67,68,69,70,71,76,79

READLIB
59

READPAN
58

READPDS
28,29,30,39,40,42,43,44,45,46,47,49,50,51,

61,64,65

READY
72,73,74,80

RESTART
52

RETURN
7,37,46,62,72,82

ROLLBACK
see cmd section (idms)

SCAN

26,28,59,72

SCANTEST
27,29,39,40,41,43,44,45,52,60,67

SCANSTEP
60,70,71

SPELL

49

STORE
see cmd section (idms)

STRING
70

SUBTRACT
55,65

SYNC

18,19,20,21,22,23,34,35,36,37,38,81,88

UNPACK
56

UNSTRING
71

WRITE
1,2,3,4,5,6,7,8,9,10,11,12,16,18,19,20,

21,24,25,27,31,32,33,34,40,45,47,52,53,

54,55,56,57,60,62,63,66,67,68,69,70,75,77,78

WRITEPDS
29,41,42,43,44,64,65

XREF

30,58

XREFDSN
61

TOPIC CROSS REFERENCE (partial highlights)
ANALYSIS IDEAS

23,28,58,72,74

CODING IDEAS

52,58

TESTING IDEAS

16,18,23,68,69

AUDITING IDEAS

55,65,66,74

DOCUMENTATION IDEAS

49

PROCESS CONTROL

1,4,7,23,55

FILE ACCESS

1,18,29,58,59

DATA BASE ACCESS

57,73,75,78,82,83,84,85

DATA MANIPULATION

6,31,53,56

FILE COPIES

1,2

FILE SQUEEZE

68,69

DATA ENCRYPTION

64,65,66

FILE PRINTS/DUMPS

14,15,16,72,73

SOURCE CODE COMPARES
50,51

FILE COMPARES

17,23,35

DATA ELEMENT CROSS REF
30,58,72,74

DATASET CROSS REFERENCE
30

JCL TOOLS

28,45,52

COMPILE AIDS

52,73,74

TEST FILE CREATION

16,20,24

CONVERSION AIDS

56

TALLY/AUDIT COUNTS

55

QUICK REPORTS

40,47
RESERVED VARIABLES
COUNTIN

12,13,14,15

COUNTOUT

24

COUNTDEL

see cmd section

EPILOGUE

55,76,77,79,81,84,85

EOJ

18,62

IDMS-CTRL

see cmd section

IDMS-DBKEY

see cmd section

IDMS-RECNUM

see cmd section

IDMS-STATUS

72,73,74,80

LOC

27,29,60,62

MEMNAME

30,40,41

SCANHIT

27,29,39,43

SQL-REASON

see cmd section

SQLCODE

75,76,77,79,80

SQLCOUNT

79

RECORDSW

46,52

RETURN-CODE

53

VAR

62

***See individual command explanations in section II.

PREFACE
This publication provides the syntax and a brief description of the functions and commands used in the Eagle88(tm) Programmer Productivity Aid utility. It is intended as a reference and teaching guide for all users. Prior knowledge of IBM z/OS is assumed.

We suggest that first time users of Eagle88(tm) browse the Tutorial Lessons (Section F) before reviewing the command syntax. Numerous samples are given in the sample section to cover the common uses. A topic & command cross reference is provided to locate usage in the samples. Your comments and suggestions are welcome. Please write to the address at the beginning of this manual.

Section B - INTRODUCTION
Eagle88(tm) is a data set utility designed for IBM mainframes. In industry terms, it is a programmer productivity aid that increases a programmer's quality while reducing time spent developing and maintaining computer programs.

This is accomplished by allowing the programmer to create, modify, or print computer files without having to write special "one time only" or "handies" to support programming activities. Eagle88(tm) features include the following:

CONTROL:

. Full control of the utility's process flow.

. Ability to do conditional branching.

. Perform verb for structure command logic.

. Call exits for user program tasks.

. Restart verb to reset files to beginning for multiple passes.

. Epilogue for EOJ processing.

. Return-Code, SQLCODE, IDMS-STATUS settings

FILE/DATABASE ACCESS:

. Supports DB2, DLI, IDMS, Datacomm, VSAM, QSAM VB or FB.

. PDS processing for scans, updates, merges, xref, and compares.

. LIBRARIAN and PANVALET structures for scans, xref, and compares.

. Up to 99 input or output files may be processed at a time.

. Record selection and deletion from a file.

. File synchronization to process like keys of up to 99 files.

. Dynamic file dataset name and device allocation capabilities

. Counters on input and output files.

DATA MANIPULATION:

. Move, add, subtract, format conversion, masking, numeric testing.

. Edit verb to automatically shift left/right values.

. String/unstring of characters.

. Scan tests for selecting, replacing, or replacing with offset.

. Exhibit verb to display values of fields.

. Test data builder.

. Ability to modify record length sizes & formats.

. Data encryption of records, fields, individual pds members.

SPECIAL FEATURES/REPORT FORMATS:

. Character print report of records..

. Hexadecimal print of records (vertical & horizontal).

. Source code compare to locate added, deleted, or moved stmts.

. Data file compare and hex print of their differences.

. Compress/decompress to save storage space of records.

. Cross reference of data names for entire application systems.

. 50,000 word spell checking dictionary facility.

EagleR01 - Edit and process messages

EagleR02 - Character printed records

EagleR03 - Vertically dumped records

EagleR04 - Horizontally dumped records

EagleR05 - Vertical dump of compared records

EagleR06 - Compared source code

EagleR07 - Xref data names report

EagleR08 - Statistics of the run

PROCESSING RULES
1.
Commands are language-like in function such as read one record, perform

a print
or move data, and loop until all files are at-end.

2. Only one command is allowed per input card. (The exceptions are
“SYNC" and "CALL" which may span multiple cards). Any values

3. beyond the required syntax will be treated as comments.

3.
Commands are entered via SYSIN DD statement.

4.
Commands may use column 1 through 71 only.

5.
"*" in column 1 indicates comment card.

6.
Completely blank cards are allowed to enhance readability.
SUMMARY OF VERBS
ADD

- accumulation of fields either binary, packed, display.

CALL

- transfer control to user-written module passing fields.

COMPARE
- tests for record differences and highlights changes.

COMPRESS
- squeeze duplicate characters of a record to save space.

COMPSRC
- request a source code compare.

CVTBIN
- converts packed or display numeric field to binary.

CVTCHAR
- converts packed or binary field to character display.

CVTDEC
- converts binary or display numeric fields to packed.

DECODE
- restores encrypted data.

DECOMPRESS - to unsqueeze a compressed file.

DEFAREA
- allocates memory scratch pads for record building or field work space.

DEFINES
- assigns names to WORKAREA and file variables to aid process.

DELETE
- allows an input record to be marked as deleted which will prevent further

 processing of that record.

DIVIDE
- provides numeric computational divide functions.

DLILINK
- creates linkage for DLI processing.

DUMP

- same as DUMPV.

DUMPH
- dumps a record in horizontal hex format (similar to core dumps).

DUMPV
- dumps a record in vertical hex format.

DYNALLOC
- dynamic allocation of file datasets. Allows variable file names to be

 created.

DYNCLOSE
- closes a dynamic file.

DYNOPEN
- opens a dynamic file.

EDIT

- moves data into smaller or larger fields with shift.

ENCODE
- provides encryption processing.

ENTRY
- allows for DLI processor control.

EXHIBIT
- displays fields.

GOTO

- allows branching to tags defined by user and EOJ stop routine.

IF

- provides for conditional processing based on data tests and file indicators.

IFX

- same as IF except does not do numeric conversions.

LOADSRC
- loads source code and compares.

MASKAND
- mask bit test to "AND" the bits.

MASKOR
- mask bit test to "OR" the bits.

MOVE

- allows an input file to be modified for processing.

MOVEN
- converts automatically numeric fields to receiving format.

MOVEX
- same as MOVE except limited within the record bounds.

MULTIPLY
- provides computational multiply functions.

PACK

- moves a display numeric field into a packed field.

PERFORM
- to perform a Eagle88(tm) subroutine.

PRINT

- prints a record in character format.

READ

- allows an input file to be defined and one record read.

READLIB
- define and read a Librarian (tm) member group.

READPAN
- define and read a Panvalet (tm) member group.

READPDS
- allows PDS member processing in groups as requested.

RESTART
- repositions file at the first record for multiple pass processing.

RETURN
- to exit a performed return.

SCAN

- searches record for any occurrence of a given data value.

SCANSTEP
- searches record for a given value and sets a location pointer (starts at

 current position pointer +1).

SCANTEST
- searches for a given value and sets a location pointer

 (always starts at position 1).

SPELL

- spell checking with 50,000 word dictionary.

STRING
- to combine several fields into a single field.

SUBTRACT
- subtraction of fields either binary, packed, display or any combination.

SYNC

- special read matches keys of multiple files.

UNPACK
- moves packed field into a display format field.

UNSTRING
- to separate a character string into individual fields.

WRITE
- allows an output to be defined and one record written.

WRITEPDS
- allows PDS member record to be written.

XREF

- releases a record to the cross reference report.

XREFDSN
- cross reference facility for data set names.

 (tm) Librarian is a trademark of Computer Associates & Applied Data Research, Inc.

 Panvalet is a trademark of Computer Associates & Pansophic, Inc.

SUMMARY OF DB2 VERBS
DB2-CONNECT
- requests attach of DB2 environment.

DB2-DISCONNECT
- requests release of DB2 resources.

EXEC SQL

- SQL statement request.

SUMMARY OF IDMS VERBS
ACCEPT

- to access statistics information.

BIND

- to declare resource usage.

COMMIT

- to commit updates and release locks.

ERASE

- to delete a record.

FIND

- to locate but not receive record data elements.

FINISH

- to release and terminate IDMS resources.

GET

- to transfer data elements located with the FIND verb.

IDMS-CONNECT
- to physically relate a detail record with its parent set.

IDMS-DISCONNECT - to disconnect a record from a set.

IDMS-IF

- will test existence of detail records in a set.

IDMS-RETURN
- returns dbkey information.

KEEP

- places a record lock on data retrieved.

MODIFY

- updates a given record.

OBTAIN

- locates and transfer record data elements to the program.

READY

- declares record and area usage.

ROLLBACK

- backs off any updates to the last commit point.

STORE

- inserts a new record to the database.

EAGLE88

PROGRAMMER PRODUCTIVITY AID

Section C - EXPLANATION OF COMMANDS

__

SYNTAX EXPLANATION
All commands use column 1 to indicate tags, labels, or comment lines. Commands may not extend beyond column 71 or consist of multiple cards (except those commands denoted with a continuation (-) mark for multiple cards). A period is required to end an "IF" statement set. For readable code, periods are suggested.

KEYWORDS are capital letters

()
enclose an item that is optional

| |
enclose an item that must be specified

 *
an asterisk in column 1 indicates comment card

bbb
a blank card up to column 71 indicates comment card

 -
continuation mark for "CALL", "ENTRY", STRING, SYNC and UNSTRING"
verbs

tag =

an 8 character name starting in column 1 to allow controlled branching or

per​formed routine names. EPILOGUE is a reserved tag for end of job

process. Prior to Eagle88's automatic shutdown and stats printing,

EPILOGUE, if specified, will receive control for special user processing

needs.

label=

an 8 character field name, which can be referred to in the processing verbs.

field=

can either be explicitly defined such as:

(FILE=ddname,POS=nnnnn,LEN=nnnnn,TYPE=x,DEC=nn)

or a literal value surrounded by quotes

or a label name in a DEFINES statement

or the special file control fields (see IF stmt for list)

ddname =
"-in" refers to an input file JCL ddname or WORKAREA the 4K scratch

pad stor​age area.

"-out" refers to an output file JCL ddname

SUMMARY OF COMMANDS AVAILABLE
(tag)
ADD

field

(TO)

field

(.)

(tag)
CALL

pgmname
(USING)
field, field,field
(-)
(.)

(tag)
COMPARE
ddname-in
(TO)

ddname-in

(.)

(tag)
COMPRESS
ddname-in
(TO)

ddname-in

(.)

(tag)
COMPSRC
(.)

(tag)
CVTBIN
field

(TO)

field

(.)

(tag)
CVTCHAR
field

(TO)

field

(.)

(tag)
CVTDEC
field

(TO)

field

(.)

(tag)
DECODE
ddname-in
(USING)
field

(.)

(tag)
DECOMPRESS
ddname-in
(TO)
ddname-in
(.)

(tag)
DEFAREA
(SIZE=nnnnn)

(label)
DEFINES
| label |
Label = 8 char name given to "DEFINES"

| literal |
Literal = X'....' C'....' P'....'

| explicit|
Explicit = (F=ddname,L=nnn,P=nnn,T=a,D=nn)

Type values are C,P,X ; also avail

POS=LOC+/- ; LEN=VAR+/-

(tag)
DELETE
ddname-in
(.)

(tag)
DIVIDE
field
(BY)
field
REMAINDER
field (.)

(label)
DLILINK
| label |
label = 8 char name given

| explicit|
explicit = (N=pcbname,L=n,P=n,T=a)

(tag)
DUMP

ddname-in
(.)

(tag)
DUMPH
ddname-in
(.)

(tag)
DUMPV
ddname-in
(.)

(tag)
DYNALLOC
ddname
(USING)
field, ...field (-) (.)

(tag)
DYNCLOSE
ddname (.)

(tag)
DYNOPEN
ddname (.)

(tag)
EDIT

field

(TO)

field
(.)

(tag)
ENCODE
ddname-in
(USING)
field
(.)

(tag)
ENTRY
DLITCBL
(USING)
|pcbname |
(-)

...../ �|pcbname |,$ �(.)

(tag)
EXHIBIT
field
(.)

(tag)
GOTO

|tag |
(.)

|EOJ|

(tag) IF |field

||EQUAL (TO)
||field

 |

|LOC OF ddname

||NOT EQUAL
||LOC OF ddname
 |

|VAR OF ddname

||LESS THAN

||VAR OF ddname
 |

|COUNTIN OF ddname
||NOT LESS

||COUNTIN OF ddname |

|COUNTOUT OF ddname
||GREATER THAN
||COUNTOUT OF ddname |

|COUNTDEL OF ddname
||NOT GREATER
||COUNTDEL OF ddname |

|RECORDSW OF ddname
|| =, NOT =

||RECORDSW OF ddname|

|SCANHIT OF ddname
|| <, NOT <

||SCANHIT OF ddname |

|MEMNAME OF ddname
|| >, NOT >

||MEMNAME OF ddname|

|(NOT) NUMERIC
|

(tag)
IFX
see "IF" above

(tag)
LOADSRC
ddname-in,
ddname-in
(EXPAND)
(SIZE=nnnnn)
(.)

(tag)
MASKAND
field
(TO)
field
(.)

(tag)
MASKOR
field
(TO)
field
(.)

(tag)
MOVE
|field

 | (TO)
|field

 |
(.)

|MEMNAME OF ddname|

|MEMNAME OF ddname|

(tag) MOVEN
field
(TO)
field
(.)

(tag)
MOVEX

same as "MOVE" above

(tag)
MULTIPLY
field
(BY)
field (.)

(tag)
PACK
field
(TO)
field
(.)

(tag)
PERFORM
tag
(.)

(tag)
PRINT
ddname-in
(.)

(tag)
READ
ddname-in
(.)

(tag)
READLIB
ddname-in
(FOR)
|member-name |
(CODE=xxx)
(.)

| ********
| *=substitute any

(tag)
READPAN
ddname-in
(FOR)
|member-name |
(.)

| **********
| *=substitute any

(tag)
READPDS
ddname-in
(FOR)
|member-name |
(.)

| ********
| *=substitute any

(tag)
RESTART
ddname-in
(.)

(tag)
RETURN
(.)

(tag)
SCAN

ddname-in
(FOR)
field
(.)

(tag)
SCANSTEP
ddname-in
(FOR)
field
(.)

(tag)
SCANTEST
ddname-in
(FOR)
field
(.)

(tag)
SPELL

ddname-in
(.)

(tag)
STRING field...field INTO field DELIMITED BY field (-) (.)

(tag)
SUBTRACT
field
(FROM)
field
(.)

(tag)
SYNC
field1 field-99
(-)
(.)

(tag)
UNPACK
field
(TO)
field
(.)

(tag)
UNSTRING
field
DELIMITED BY field INTO field....field (-) (.)

(tag)
WRITE
ddnameout
(FROM)

ddname-in
(.)

(tag)
WRITEPDS
ddname-out
(FROM)
ddname-in
(.)

(tag)
XREF
ddname-in
(EXPAND)
(.)

(tag)
XREFDSN
ddname-in
(.)

DB2 SUPPORTED VERBS

===================

(tag)
DB2-CONNECT

(SYSTEM=xxxx)
(.)

(tag)
DB2-DISCONNECT
(.)

(tag)
EXEC SQL
....(:field).... END-EXEC (.)
... (:field) a �END-EXEC8 �(.)

":field" is a Eagle88 variable inside the SQL format

IDMS SUPPORTED VERBS

====================

(tag)
ACCEPT
field
FROM CURRENCY (.)

(tag)
ACCEPT
field
FROM IDMS-STATISTICS (.)

(tag)
ACCEPT
field
FROM SET
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM AREA
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
NEXT CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
PRIOR CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
OWNER CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
PROCEDURE (.)

(tag)
ACCEPT
field
FROM
field
BIND (.)

(tag)
BIND PROCEDURE FOR
field
TO field (.)

(tag)
BIND RUN-UNIT FOR
field
DBNAME
field (.)

(tag)
BIND RUN-UNIT FOR
field
NODENAME
field
DBNAME
field (.)

(tag)
BIND RUN-UNIT FOR
field
NODENAME
field (.)

(tag)
BIND RUN-UNIT FOR
field

(tag)
BIND
field
TO
field (.)

(tag)
BIND
field
WITH
field (.)

(tag)
COMMIT (ALL)
(.)

(tag)
ERASE
field
(PERMANENT MEMBERS)
(.)

(tag)
ERASE
field
(SELECTIVE MEMBERS)
(.)

(tag)
ERASE
field
(ALL MEMBERS)

(.)

(tag)
FIND
(KEEP) (EXCLUSIVE) (FIRST) field (WITHIN) (AREA) field (.)

 (LAST)

 (PRIOR)

 (NEXT)

(tag)
FIND
(KEEP) (EXCLUSIVE)
(CURRENT)
WITHIN (AREA) field (.)

(FIRST)

(LAST)

(NEXT)

(PRIOR)

(OWNER)

(DBKEY)

(DUPLICATE)

(tag)
FIND (KEEP) (EXCLUSIVE) field DB-KEY IS field (.)

(tag)
FIND (KEEP) (EXCLUSIVE) field WITHIN field CURRENT USING field (.)

(tag)
FIND (KEEP) (EXCLUSIVE) field field WITHIN (AREA) field (.)

(tag)
FIND (KEEP) (EXCLUSIVE) CALC (ANY) (.)

(tag)
FINISH
(.)

(tag)
GET
(field)
(.)

(tag)
IDMS-CONNECT

field
(.)

(tag)
IDMS-DISCONNECT
field
(.)

(tag)
IDMS-IF (NOT)
field
(MEMBER)
(.)

(IS EMPTY)

(IS NOT EMPTY)

(tag)
IDMS-RETURN
field
FROM
field
(CURRENCY)
(.)

(FIRST)

(LAST)

(NEXT)

(PRIOR)

(USING field)

(tag)
KEEP
(EXCLUSIVE) (CURRENT) (WITHIN) (AREA)
field
(.)

(tag)
MODIFY
field
(.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) FIRST field WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) LAST field WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) NEXT field WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) PRIOR field WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) FIRST field WITHIN field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) LAST field WITHIN field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) NEXT field WITHIN field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) PRIOR field WITHIN field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field DB-KEY IS
field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field WITHIN AREA
field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field WITHIN

field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field CURRENT USING field

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field USING field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field field WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) field field WITHIN
 field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CALC ANY field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CALC
 field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CURRENT WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) FIRST
WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) LAST
WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) NEXT
WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) PRIOR
WITHIN AREA field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) DB-KEY
field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) DUPLICATE
field (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CURRENT
WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) FIRST

WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) LAST

WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) NEXT

WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) PRIOR

WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) OWNER

WITHIN
field
 (.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CURRENT
field
(.)

(tag)
OBTAIN (KEEP) (EXCLUSIVE) CURRENT

(.)

(tag)
READY
(field)
USAGE-MODE IS (EXCLUSIVE)
(RETRIEVAL) (.)

 (PROTECTED)
(UPDATE)

(tag)
READY
(field)
(.)

(tag)
ROLLBACK
(CONTINUE)
(.)

(tag)
STORE
field
(.)

RESERVED VARIABLE LIST
===========================

--EXPLICIT SYNTAX--

FILE

8 character ddname or DEFAREA buffer area.

LEN

length keyword in the explicit format.

POS

position keyword in the explicit format.

TYPE

field format type of character, packed or hex.

DEC

decimal places of a numeric field. Used for SQL only.

VAR

the adjustable 4 byte binary length value for LEN=VAR.

LOC

the adjustable 4 byte binary position value for POS=LOC.

--FILE CONTROL--

COUNTIN
records in count for an input file a packed 4 bytes.

COUNTOUT
records out count for an output file a packed 4 bytes.

COUNTDEL
records deleted count for an input file a packed 4.

MEMNAME
READPDS's member name storage an 8 byte field.

RECORDSW
eof, rec status indicator (Y=eof, P=present, E=empty).

SCANHIT
SCANTEST indicator (Y=hit, space=no hit).

--PROCESS CONTROL--

EOJ

reserved tag name which causes task shutdown manually.

EPILOGUE

reserved tag name which caused an automatic exit at eof of all files.

IDMS-CTRL

the IDMS subschema control area.

IDMS-STATUS
a 4 character return code for all operations.

IDMS-DBKEY
the 4 byte binary field containing the database key of the record.

IDMS-RECNUM
a 4 byte binary field containing the record number.

RETURN-CODE
a 4 byte binary field containing the current return code.

SQL-REASON
the reason code issued by the call attach facility.

SQLCODE

a 4 byte binary field containing the sql return code.

SQLCOUNT

a 4 byte binary field containing the rows affected a

update/insert/delete request.

ACCEPT
PURPOSE:

To get IDMS control statistics and db-key.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
ACCEPT
field
FROM CURRENCY (.)

(tag)
ACCEPT
field
FROM IDMS-STATISTICS (.)

(tag)
ACCEPT
field
FROM SET
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM AREA
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
NEXT CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
PRIOR CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
OWNER CURRENCY (.)

(tag)
ACCEPT
field
FROM
field
PROCEDURE (.)

(tag)
ACCEPT
field
FROM
field
BIND (.)

SPECIAL NOTES:
The ACCEPT verb is used to get db-key or stats information. IDMS-STATUS and IDMS-CNTL are available through direct Eagle88 reference. See reserved variable list page C-9.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms area sweep to get db-keys *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 dbstats DEFAREA SIZE=300 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 dbstat1 DEFINES (F=dbstats,P=1,L=300) *stats layout

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name. *retrieval mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ACCEPT dbstat1 FROM IDMS-STATISTICS. *get stats

 PRINT dbstat. *and print them

 done FINISH. *terminate DBMS

 GOTO EOJ. *shutdown
ADD
PURPOSE:

To accumulate values into a field.

DESCRIPTION:

(tag) ADD field (TO) field (.)

SPECIAL NOTES:
ADD will add the value in the first operand to the value of the second operand. Field type is checked and automatically converted to the receiving field's numeric type.

Numeric types are character display, packed decimal, and binary. Character types have maximum size of 31 bytes, Packed fields have limits of 31 digits (16 bytes), and binary fields have limits of 4 bytes binary. Max binary numeric value is 134,217,727 or hex '07FFFFFF'. If neither field is binary, the limit is 3115 digits.

Numeric validity checking is done prior to function. An error message will print and the activity will be skipped for data values that are not numeric. Warning messages will print for overflow in excess of 31 digits. User fields, however, will truncate to its defined size.

EPILOGUE is a reserved tag to instruct Eagle88 to automatically branch and process starting at this tag. Using EPILOGUE requires the use of GOTO EOJ to terminate the task.

"tag"

a name up to 8 characters for GOTO branching and is optional..

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set and is optional.
SAMPLE: column 1 up to col 71

* read and accum billed amounts *

billed DEFINES (F=mstdd,P=1,L=4,T=X) *amt field

total DEFINES (F=WORKAREA,P=1,L=16,T=P) *total 31 digit size

 CVTDEC '0' to total. *init the work to zero

start READ mstdd. *read next mst

 ADD billed TO total. *accum amount

 GOTO start. *loop until done

EPILOGUE EXHIBIT total *at eof display

 GOTO EOJ. *shutdown

BIND

PURPOSE:

To designate database and record working storage required by the IDMS task.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:
Format 1:

(tag)
BIND PROCEDURE FOR
field
TO
field (.)

Format 2:

(tag)
BIND RUN-UNIT FOR
field
DBNAME
field (.)

(tag)
BIND RUN-UNIT FOR
field
NODENAME
field
DBNAME
field (.)

(tag)
BIND RUN-UNIT FOR
field
NODENAME
field (.)

(tag)
BIND RUN-UNIT FOR
field

Format 3:

(tag)
BIND
field
TO
field (.)

(tag)
BIND
field
WITH
field (.)

SPECIAL NOTES:
The format 2 BIND establishes connection to IDMS for the DML subschema you have chosen. Format 3 is used to instruct IDMS where to store the retreived record.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to dump out records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
CALL
PURPOSE:

To call a user module and pass requested data fields.
DESCRIPTION:

(tag) CALL Pgmname (USING) field, field,.... field (-) (.)

SPECIAL NOTES:
CALL loads the named user written module and passes control. The pgmname does not have quotes around it. Up to 100 data fields in a parm string may be passed. Normal COBOL linkage conventions are observed where register 1 contains the address of the parm list. The parm list contains an address for every data field requested. The last data field ad​dress contains hex "80" to signify the parm list end. Note: NOENDJOB and NORENT compile options may be needed for calls to COBOL/VS programs. For COBOL 2, use DATA(24) compile and AMODE=24 for the link options to force 24 bit mode of COBOL .

Data modifications done by user modules do affect the actual storage locations. The reserved variable RETURN-CODE is available to test register 15 upon return to Eagle88. Register 15 is the same as COBOL's RETURN-CODE.

"tag"

is a name up to 8 char used for "GOTO" branching.

"pgmname"
is the module to receive control (no quotes).

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" - "

used to allow multiple cards.

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* read and accum amts via ADJ010 *

billed DEFINES (F=mstdd,L=4,P=23,T=P) *billed amount

total DEFINES (F=WORKAREA,L=6,T=C) *total amount

percnt DEFINES (F=WORKAREA,L=3,P=10) *percent calc

start READ mstdd. *read next mst

 CALL adj010 USING billed - *call calc pgm

 total - *

 percnt. *

 IF RETURN-CODE = '0' *if good return code

 GOTO start. * yes-loop until done

 EXHIBIT 'aborting......' *display abort msg

 EXHIBIT RETURN-CODE. *display code

 GOTO EOJ. *shutdown
COMMENT CARDS
AND

STATEMENT COMMENTS

PURPOSE:

To provide documentation.
DESCRIPTION:

(1).
*
-
Asterisk in column 1 up to column 71.

(2).
bbb
-
Completely blank card up to column 71.

(3).

-
Comments can be placed one space beyond the required syntax.

(4).

-
Comments may be placed after the required syntax. For readability we

suggest an asterisk before the comments although the asterisk does not

mean anything to Eagle88 except in column 1.

SPECIAL NOTES:
Good programming practice suggest comments even for quick prints. Comments are easy to use and do not cause processing overhead.

SAMPLE: col 1 up to col 71

* work labels master # location *

mstnum DEFINES (F=mstdd,P=1,L=10)

*stnum DEFINES (F=mstdd,P=5,L=25) *commented out

* read, select, print the record *

start READ mstdd. *read new mst

 IF mstnum = '1234567890' *find it?

 PRINT mstdd. *yes, print it

 GOTO start. *loop for more

COMMIT
PURPOSE:

To physically commit database records and release locks.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
COMMIT (ALL)
(.)

SPECIAL NOTES:
Database records deleted are not physically removed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to delete records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 PRINT umtcxfr * yes-print record

 ERASE rc1name * -delete the record

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 COMMIT. * yes-commit it

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
COMPARE
PURPOSE:
To print vertical record dumps when the two given records are different.
DESCRIPTION:

(tag) COMPARE ddname-in (TO) ddname-in (.)

SPECIAL NOTES:
The symbol "=" prints below bytes that are equal and the symbol "*" prints below bytes that are different.

Only those records that are different will print. For unequal record sizes place the larger sized records on ddnameB for better documentation of the differences. The Compare command initiates a report for the output prints. Data set name, volume serial number, create date, and other report title information are automatically printed.

Trick: On files that always have data changes (such as date processed), blank out the field on both files before compare. See Lesson #9 and sample #37 for more details.

Trick: On files of unequal lengths or when only portions of the file are to be compared, build a temporary extract in a DEFAREA and compare the work areas. Don't forget to set the DEFAREA's COUNTIN field so the record counts have meaning.

"tag"

is a name up to 8 characters for GOTO branching.

"ddname-in"
is the 1st input file name.

"ddname-in"
is the 2nd input file name.

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* keys and limit defined *

mst#a DEFINES (F=mst1a,L=5,P=5) *rec location

mst#b DEFINES (F=mst2b,L=5,P=5) *rec location

* report test runs a & b masters *

start SYNC mst#a mst#b. *sync equal keys

 COMPARE mst1a TO mst2b. *print update

 GOTO start. *loop until done
COMPRESS
PURPOSE:

To squeeze duplicated bytes in order to save storage.

DESCRIPTION:
(tag) COMPRESS ddname-in (TO) ddname-in (.)

SPECIAL NOTES:
The input file record may be either fixed or variable format, but the output record created is in variable format. One logical record in will match on logical record out of this process. The difference is that the record will be compressed.

The RDW for the new output record will automatically be set and ready for outputting. You must specify an LRECL of 5 bytes greater than the original record size.

The compressing routine used bytes 1-4 of the receiving ddname for the RDW. Byte 5 is reserved for the compress control flag. Whenever four or more bytes are found to be the same, the first byte is marked with the control flag, the second is the repeating length size, and the third is the byte value which repeats. Sometimes an individual record cannot reduced and it is for this reason the LRECL must be 5 bytes larger than the original.

There are several advantages to keeping a one-to-one match between original compressed records. These include the ability to divide compressed files, scan, search, or modify these records quicker. Records can be stored in a compressed format, yet when needed, they can selectively be decompressed.

"tag"
is a name up to 8 characters for GOTO branching.

"ddname-in"
is the file record to compress..

"ddname-in"
is where to build the new output record.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

**

* compress master file to backup *

**

start READ mstin. *read in file

 COMPRESS mstin TO WORKAREA. *squeeze record

 WRITE mstout FROM WORKAREA. *out compressed rec

 GOTO start. *loop until done
COMPSRC
PURPOSE:

To request a source code compare.
DESCRIPTION:

(tag) COMPSRC (.)

SPECIAL NOTES:
COMPSRC is used to activate the source code compare facility. Issuing a COMPSRC causes the "before" source statements to be compared against the "after" statements using a page split technique on the loaded compare tables (see LOADSRC). Maximum record length is 80 bytes.

The "after" table is first compared as an entire group against the "before" table. If the page fails to match, the "after" page is split and compares are done against the smaller pages. When a page matches a "before" table section, both "after" and "before" pages are set as used. This process of comparing and page splits continue until all statements are accounted for or determined to be different. Page split id numbers appear on the compare R06 report as well as the record number that matched.

This approach allows major blocks of source code to be identified first, then the smaller blocks. Finally the page size will be a single statement. By using this technique, we can locate and identify blocks of code that moved but did not change. The "SEQ SKIP" message identifies moved blocks.

Report R06 prints the "before" source code showing the DELETED, EQUAL, or SEQ SKIP source lines. ADDs from "after" source code appear at the end of this compare. Detail lines print file ddname, record number, page split id, and the standard heading information.

"tag"
a name up to 8 characters for GOTO branching.

" . "
 will delimit an IF statement set.

This sample is a simplified library compare which assumes equal records and equal members on both files. Sample is for logical illustration.

SAMPLE 1: col 1up to col 71

 * simplified library source compare

 hold DEFINES C'AAAAAAAA' *hold member

 reads READPDS before FOR FT****** *assumes equal

 READPDS after FOR FT****** *rec & mem cnt

 IF MEMNAME OF before = hold

 LOADSRC before after

 MOVE MEMNAME OF before TO hold

 GOTO reads.

 COMPSRC.

 MOVE MEMNAME OF before TO hold.

 LOASSRC before after.

 GOTO reads.
This next sample is a comprehensive library compare which will coordinate members and indicate members added or removed.

SAMPLE 2: col 1 up to col 71

* comprehensive library compare *

hold DEFINES C'AAAAAAAA' *hold member

high DEFINES C'ZZZZZZZZ' *high member

seqb DEFINES (F=before,P=72,L=9) *seq num

seqa DEFINES (F=after,P=72,L=9) *seq num

hldid DEFINES C'Y' *hold indicator

 READPDS before FOR ******** *init reads

 READPDS after FOR ******** *

 GOTO reset. *

loop IF RECORDSW OF before = 'Y' *if eof set high

 MOVE high TO MEMNAME OF before. *

 IF RECORDSW OF after = 'Y' *

 MOVE high TO MEMNAME OF after. *

 IF MEMNAME OF before = MEMNAME OF after

 IF MEMNAME OF before = hold *

 MOVE ' ' TO seqb *if same member

 MOVE ' ' TO seqa * then clear seq

 LOADSRC before after * load and read

 READPDS before FOR ******** * next records

 READPDS after FOR ******** *

 GOTO loop. *

 IF MEMNAME OF before > hold *if member done

 IF MEMNAME OF after > hold * then request

 COMPSRC * a compare

 GOTO reset. * and reset hold

 IF MEMNAME OF before = hold *if before not

 GOTO loadb. * done finish it

 IF MEMNAME OF after = hold *if after not

 GOTO loada. * done finish it

 GOTO loop. *

loadb MOVE RECORDSW OF after to hldid *save file ind

loadbl IF MEMNAME OF before = hold *

 MOVE 'E' TO RECORDSW OF after *finish up before

 MOVE ' ' TO seqb * member loading

 LOADSRC before after * before reqst

 MOVE hldid TO RECORDSW OF after *reset file ind

 READPDS before FOR ******** * compare

 GOTO loadb. * and reset

 COMPSRC. *

 GOTO reset. *

loada MOVE RECORDSW OF after to hldid *save file ind

loadal IF MEMNAME OF after = hold *finish after

 MOVE 'E' TO RECORDSW OF after *switch set empty

 MOVE ' ' TO seqa *or deleted to

 LOADSRC before after *avoid before rec

 MOVE hldid TO RECORDSW OF after *reset file ind

 READPDS after FOR ******** *being loaded

 GOTO loada. *too early

 COMPSRC. *

 GOTO reset. *

reset IF MEMNAME OF before = MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before < MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before > MEMNAME OF after

 MOVE MEMNAME OF after TO hold.

 GOTO loop.
CVTBIN
PURPOSE:

To convert a display or packed numeric field into a binary format. This verb is

preferred over the MOVE statement for numeric moves.
DESCRIPTION:

(tag)
CVTBIN
field
(TO)
field
(.)

SPECIAL NOTES:
CVTBIN converts the value of a field to a binary format and stores the value in another location. The sending field may be either a character display or a packed numeric data. The receiving field has a size maximum of 4 bytes.

Definition of field type is determined by the TYPE keyword or the literal defined. See DEFINES verb for more information.

The receiving field will be padded with zeros or truncated of high order digits when necessary to handle the sending field being too small or too large.

"tag"
a name up to 8 characters for GOTO branching.

"field"
is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "
will delimit an IF statement set.

SAMPLE: col 1up to col 71

* convert fields into binary *

lit54 DEFINES P'+54' *packed value

amount DEFINES (F=in,P=1,L=12,T=C) *amount field

time DEFINES (F=in,P=45,L=6,T=P) *time

rdw DEFINES (F=WORKAREA,P=1,L=2,T=X)

amt DEFINES (F=WORKAREA,P=5,L=4,T=X)

tim DEFINES (F=WORKAREA,P=9,L=3,T=X)

start READ in. *read rec

 CVTBIN lit54 TO rdw. *load vb length

 CVTBIN amount TO amt. *amt convert

 CVTBIN time TO tim. *time convert

 WRITE out FROM WORKAREA. *output rec

 GOTO EOJ. *shut down
CVTCHAR
PURPOSE:

To convert a binary or packed numeric field into a character format. This verb

is preferred over the MOVE verb for numeric fields because of its automatic

justification features.
DESCRIPTION:

(tag)
CVTCHAR
field
(TO)
field
(.)

SPECIAL NOTES:
CVTCHAR converts a numeric field into character format. The sending field may be either a packed numeric or binary data. The field's maximum size is 31 digits (16 bytes including the sign).

Definition of field type is determined by the TYPE keyword or the literal defined. See DEFINES verb for more information.

The receiving field will be padded with zeros or truncated of high order digits when necessary to handle the sending field being too small or too large.

"tag"
a name up to 8 characters for GOTO branching.

"field"
is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "
will delimit an IF statement set.

SAMPLE: col 1up to col 71

* convert fields into character *

lit54 DEFINES P'+54' *packed value

amount DEFINES (F=in,P=1,L=12,T=C) *amount field

start READ in. *read rec

 CVTCHAR LIT54 TO amount. *convert value

 WRITE out FROM in. *output rec

 GOTO EOJ. *shut down
CVTDEC
PURPOSE:

To convert a binary or display numeric field into a packed format.

DESCRIPTION:

(tag) CVTDEC field (TO) field (.)

SPECIAL NOTES:
CVTDEC converts the value of a field into a packed format and stores the value at another location. The sending field may be either a character display numeric or binary data. The sending field's maximum size is 15 digits (8 bytes including the sign).

Definition of field type is determined by the TYPE keyword or the literal defined. See DEFINES verb for more information.

The receiving field will be padded with zeros or truncated of high order digits when necessary to handle the sending field being too small or too large.

"tag"
a name up to 8 characters for GOTO branching.

"field"
is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "
will delimit an IF statement set.
SAMPLE: col 1up to col 71

* convert fields into packed *

lit54 DEFINES P'+54' *packed value

amount DEFINES (F=in,P=1,L=12,T=C) *amount field

time DEFINES (F=in,P=45,L=4,T=X) *time

rdw DEFINES (F=WORKAREA,P=1,L=2,T=X)

amt DEFINES (F=WORKAREA,P=5,L=8,T=P)

tim DEFINES (F=WORKAREA,P=15,L=3,T=P)

start READ in. *read rec

 CVTBIN lit54 TO rdw. *load vb length

 CVTDEC amount TO amt. *amt convert

 CVTDEC time TO tim. *time convert

 WRITE out FROM WORKAREA. *output rec

 GOTO EOJ. *shut down
DB2-CONNECT
PURPOSE:

To connect to IBM's DB2 database environment.
ENVIRONMENT:
DB2 data base manager only.
DESCRIPTION:

(tag)
DB2-CONNECT (SYSTEM=xxxx)
(PUNCH=LOADER)
(.)

(PUNCH=EAGLE)
SPECIAL NOTES:
DB2-CONNECT instructs Eagle88 to connect the task to DB2 via the Call Attach Facility (CAF) under Eagle88's own plan name EAGLE19. See DB2-DISCONNECT for releasing the resources.

The PUNCH parameter builds and writes to ddname EAGPUNCH the IBM loader command cards based on the select or declared cursors that exist in the job. Using the PUNCH=EAGLE, builds Eagle88 DEFINES statements instead of IBM loader statements.

DB2-CONNECT instructs Eagle88 to connect the task to DB2. For shops that have IDMS, IMS, and/or DB2, connection to these facilities can be made at the same time. Transfer of data from one DBMS to another is allowed provided the CPU region supports the products.

"tag"

a tag name up to 8 characters used for GOTO branching.

"SYSTEM"
keyword for DB system id. Max 4 characters.
 SAMPLE: col 1 up to col 71

* db2 record dump *

account DEFAREA SIZE=220 *memory workarea

rec1work DEFINES (F=account,P=1,L=220) *full work size

acctid DEFINES (F=account,P=1,L=5) *acct id

acctname DEFINES (F=account,P=6,L=40) *acct name

acctbal DEFINES (F=account,P=46,L=8,T=P) *acct amount

date DEFINES '05/12/1990' *search date

 DB2-CONNECT SYSTEM=DB2T. *connect to db2

 IF SQLCODE NOT = '0' *

 EXHIBIT 'aborting....' *if connect error

 EXHIBIT SQL-REASON * yes-issue msg

 GOTO EOJ. *

* *declare cursor

 EXEC SQL DECLARE cur1 CURSOR

 SELECT account_id, account_name, beg_balance

 FROM db2.paxkact

 WHERE CHAR(account_date,USA) = :date END-EXEC.

* *open cursor

 EXEC SQL OPEN cur1 END-EXEC.

* *read first row

loop EXEC SQL FETCH cur1

 INTO :acctid, :acctname, :acctbal END-EXEC.

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT SQLCODE * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF account. *manually up counts

 PRINT account. *print record

 DUMP account. *dump record

 GOTO loop. *loop for more

done EXEC SQL CLOSE cur1 END-EXEC. *close cursor

 DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF account. *

 GOTO EOJ. *shutdown
DB2-DISCONNECT
PURPOSE:

To disconnect from IBM's DB2 database environment.
ENVIRONMENT:
DB2 data base manager only.
DESCRIPTION:

(tag)
DB2-DISCONNECT
(.)

SPECIAL NOTES:
DB2-DISCONNECT instructs Eagle88 to close and release the DB2 task resources. Eagle88 manages resource usage via the Call Attach Facility (CAF) under Eagle88's own plan name EAGLE19. See DB2-CONNECT for allocation of DB2 resources.

"tag"

a tag name up to 8 characters used for GOTO branching.
SAMPLE: col 1 up to col 71

* db2 record dump *

account DEFAREA SIZE=220 *memory workarea

rec1work DEFINES (F=account,P=1,L=220) *full work size

acctid DEFINES (F=account,P=1,L=5) *acct id

acctname DEFINES (F=account,P=6,L=40) *acct name

acctbal DEFINES (F=account,P=46,L=8,T=P) *acct amount

date DEFINES '05/12/1990' *search date

 DB2-CONNECT SYSTEM=DB2T. *connect to db2

* *declare cursor

 EXEC SQL DECLARE cur1 CURSOR

 SELECT account_id, account_name, beg_balance

 FROM db2.paxkact

 WHERE CHAR(account_date,USA) = :date END-EXEC.

* *open cursor

 EXEC SQL OPEN cur1 END-EXEC.

* *read first row

loop EXEC SQL FETCH cur1

 INTO :acctid, :acctname, :acctbal END-EXEC.

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT SQLCODE * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF account. *manually up counts

 PRINT account. *print record

 DUMP account. *dump record

 GOTO loop. *loop for more

done EXEC SQL CLOSE cur1 END-EXEC. *close cursor

 DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF account. *

 GOTO EOJ. *shutdown
DECODE
PURPOSE:

To restore data that was encrypted using the ENCODE facility.
DESCRIPTION:

(tag) DECODE ddname-in (USING) field (.)
SPECIAL NOTES:
DECODE is the opposite of ENCODE. Therefore, the same encryption key and technique must be used. See the ENCODE for special notes. Password must be 8 bytes in length.

SAMPLE: col 1.......up to col 71

* convert fields into packed *

password DEFINES 'TENNIS ' *encryption key

loop READPDS textin FOR admin*** *read members

 DECODE textin USING password. *decode rec

 WRITEPDS textout FROM textin. *rewrite mem

 GOTO loop.
DECOMPRESS
PURPOSE:

To unsqueeze a compress file to its original format.

DESCRIPTION:

(tag) DECOMPRESS ddname-in (TO) ddname-in (.)

SPECIAL NOTES:
The input file record must be a compressed format which contains special control flags and markings (See COMPRESS verb).

The decompressing routine uses bytes 1-4 of the receiving ddname for the RDW. Byte 5 determines the decompress control flag. Whenever a control flag is found, the next byte indicates the number of times to duplicate the value in the third byte. The original record area is left intact. It is the receiving area that will contain the expanded record.

"tag"
is a name up to 8 characters for GOTO branching.

"ddname-in"
is the file record to decompress.

"ddname-in"
is where to build the new output record.

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

**

*decompress master file *

**

start READ mstbk. *read in file

 DECOMPRESS mstbk TO WORKAREA. *unsqueeze record

 WRITE mstout FROM WORKAREA. *out original rec

 GOTO start. *loop until done
DEFAREA
PURPOSE:

To define a scratch pad area in memory similar to WORKAREA.
DESCRIPTION:
tag
DEFAREA
(SIZE=nnnnn)

SPECIAL NOTES:
DEFAREA was created to allow workareas of variable sizes. The tag name used is treated the same as a file ddname for field references and record print verbs. Maximum size is 32760 bytes and minimum is 1 byte. A DEFAREA ddname counts as one of your 99 in/out file ddnames allowed.

Because the DEFAREA tag is considered a file name, the PRINT, COMPARE, and other verbs using file name are supported. In earlier versions of Eagle88 (V2.xx-4.xx), we had to "read in" a record from a file and steal it's buffer area for record building.

The reserved name WORKAREA continues to be automatically built with the 4096 byte size. DEFAREA does not need to be stated for the system scratch pad name WORKAREA.

"tag"

a work space name up to 8 characters is required.

"SIZE"

keyword is the memory size in bytes that you wish to allocate. If not stated the default is

4096 bytes.
SAMPLE: col 1 up to col 71

 * idms area sweep to dump out records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db name

 ss1name DEFINES 'intssc01 ' *schema name

 rc1name DEFINES 'umtcxfr ' *record name

 ar1name DEFINES 'pend-area ' *area name

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
DEFINES
PURPOSE:
To provide labels for file or WORKAREA data fields. To define a data key for the

SYNC verb. To provide equates to other labels.

DESCRIPTION:

(label)
DEFINES
label

literal

explicit

SPECIAL NOTES:
"label"

is a name up to 8 characters

"literal"

has five formats:

'character data inside single quotes or double quotes'

"A double quote allows works like it's"

C'character data inside single or double quotes'

P'packed data up to 31 digits + or - '

X'hex data in even increments '

"explicit"
defines a field within an input file or WORKAREA by providing the ddname-in, the

POSition within the record (based on the first byte equal to 1), the LENgth, and Type of

the field. Each are separated by commas and enclosed with the paren​theses () but may

be in any sequence. POSition and LENgth are limited to 32760 bytes.

"explicit" has four operands. Only FILE is required.

"FILE=" or "F=" denotes the input file name or the WORKAREA. No default.

"POS=" or "P=" denotes the starting position of the field. Defaults to 1.

"LEN=" or "L=" denotes the length in bytes of the operand. Defaults to 1.

"TYPE=" or "T=" field type C=char, P=packed, X=hex binary. Default is "C".

A special feature of the POSition operand is the LOCation reference. "LOC" means

location pointer as set by the SCANTEST verb (see SCANTEST). You can also modify

the length fields and make them variable by specifying LEN=VAR. Modification is

done by the ADD/MOVE verbs.

Formats:
(FILE=WORKAREA,POS=nnnnn,LEN=nnnnn,TYPE=a)

or

(FILE=ddname-in,POS=nnnnn,LEN=nnnnn,TYPE=a)

or

(FILE=ddname-in,POS=LOC,LEN=VAR,TYPE=a)

or

(FILE=ddname-in,POS=LOC+nnnnn,LEN=nnnnn,TYPE=a)

or

(FILE=ddname-in,POS=LOC-nnnnn,LEN=nnnnn,TYPE=a)

SAMPLE: col 1up to col 71

* work labels *

total DEFINES (F=WORKAREA,P=1,L=8,T=P)

rdwlen DEFINES (F=bill,P=1,L=2,T=X)

scan+2 DEFINES (F=mstdd,L=3,P=LOC+2)

msthold DEFINES (F=WORKAREA,L=VAR,P=1)

mstnum DEFINES (F=mstdd,P=1,L=10)

cotitle DEFINES (FILE=mstdd,POS=10,LEN=15)

sel-it DEFINES C'1234567890'

title DEFINES "Eagle88'S DOUBLE QUOTE"

company DEFINES 'XYZ CORPORATION'

data DEFINES C'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

packnum DEFINES P'+1234567890123456789012345678901'

packa DEFINES P'-12456789'

packb DEFINES P'123'

hex DEFINES X'5B00F2FF'

* read, select, modify the record *

start READ mstdd. *read next mst

 ADD '1' TO VAR OF mstdd. *up fld length

 ADD '1' TO LOC OF mstdd. *up pos loc

 IF mstnum = sel-it *find it?

 MOVE company TO cotitle *move in new name

 WRITE mstout FROM mstdd. *yes, write it

 GOTO start. *loop for more

DELETE
PURPOSE:
To mark a record as deleted so that subsequent processing statements using that record

are skipped until a new read has occurred.

DESCRIPTION:

(tag) DELETE ddname-in (.)

SPECIAL NOTES:
DELETE command takes advantage of the conditional processing each command has built in. When a record is not available, has been deleted, or is not present, commands will bypass the process request until a new read has been issued for that file.

"tag"

is a name up to 8 characters used for GOTO branching.

"ddname"
is the input file of the record to mark as deleted.

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* number defined *

mstnum DEFINES (F=mstdd,L=5,P=5) *rec location

* copy all but 12345 *

start READ mstdd. *read next master

 IF mstnum EQUAL '12345' *if rec

 DELETE mstdd. * skip it

 WRITE outmst from mstdd. *write record but

 GOTO start. *not rec 12345
DIVIDE
PURPOSE:

To mathmatically divide one number by another.

DESCRIPTION:

(tag) DIVIDE field (BY) field REMAINDER field (.)

SPECIAL NOTES:
DIVIDE will divide the value in the first operand to the value of the second operand. Field type is checked and automatically converted to the receiving field's numeric type. The remainder field must be large enough to accomadate the significate digits of the divisor or an error will occur. For example, the first field might be divided by the number 123. The remainder must have at least 3 digits to handle a remainder.

The defined size of the fields is not important in the operation, but the actual data attempting to execute must fit a rigid rule. The total significant digits of the execution must not exceed 31 digits. You can divide a 15 digit number by a 15 digit number or a 29 digit number by a 3 digit number, but don't attempt a 29 digit number by a 4 digit divisor.

Numeric types are character display, packed decimal, and binary. Character types have maximum size of 31 bytes, Packed fields have limits of 31 digits (16 bytes), and binary fields have limits of 4 bytes binary. Max binary numeric value is 134,217,727 or hex '07FFFFFF'.

"tag"

a name up to 8 characters for GOTO branching and is optional..

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set and is optional.
SAMPLE: column 1 up to col 71

* read and accum billed amounts *

billed DEFINES (F=mstdd,P=1,L=10,T=P) *amt field

rem DEFINES '00' *work remainder field

start
READ mstdd. *read next mst

DIVIDE billed by '12' REMAINDER rem. *compute monthly amt

EXHIBIT billed. *display amount

GOTO start. *loop until done

DLILINK / ENTRY
PURPOSE:

Allows linkage from DLI process supervisor.
DESCRIPTION:

(tag) ENTRY DLITCBL (USING) pcbname pcbname (-)

(tag) DLILINK

|label |

|explicit |

SPECIAL NOTES:
DLI access is accomplished by calling the standard DLI processor DFSRRC00 passing the application program id of EAGLE and the PSB you wish to used.

The purpose of the ENTRY verb is to declare the expected PCBs for Eagle88 to use, and allow field definitions to those linkage areas. Note: the ENTRY must precede the DLILINK statements for proper reference resolution.

The DLILINK verb is used to associate field names to the linkage address. There are no limitations to the number of parms passed to Eagle88. Also these verbs have been designed to any USER written supervisor program to call Eagle88 passing parms to activate processing.

The required JCL must now use the EAGLEIMS proc. Database file names depend on the PSB you choose to use. Keep in mind, it is not necessary to create a special PSB for Eagle88, as your appli​cation will most likely have a PSB available with the needed access ability such as read only or update capability.

From this point on, the programmer simply uses standard DLI call patterns to position and process the file. I/O areas for reading and writing segments can be done out of WORKAREA or DEFAREA.

"tag"

a name up to 8 characters for GOTO branching.

"pcbname"
pcb areas sent by DLI for the PSB you choose.

"NAME="
is the pcbname given in the ENTRY statement.

"N="

same as NAME=

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

//STEP1 EXEC EAGLEIMS,PSB='psbname'

//gcdinp01 DD DSN=test.gcdinp01,DISP=SHR

//gcdinp02 DD DSN=test.gcdinp02,DISP=SHR

//gcdinx1 DD DSN=test.gcdinx1,DISP=SHR

//gcdinx2 DD DSN=test.gcdinx2,DISP=SHR

//SYSIN DD *

**

* IMS DATA BASE SAMPLE

**

 ENTRY DLITCBL USING pcb1.

pcb1 DLILINK (N=pcb1,P=1,L=50)

pcb1rc DLILINK (N=pcb1,P=11,L=2)

insured DEFAREA SIZE=200

insarea DEFINES (F=insured,P=1,L=200)

gn DEFINES 'GN '

ssa DEFINES 'INSURED '

total DEFINES P'0000001'

good DEFINES ' '

 MOVE ' ' TO insarea.

loop CALL CBLTDLI USING gn, pcb1, insarea, ssa.

 IF pcb1rc NOT EQUAL good

 EXHIBIT total

 EXHIBIT pcb1

 GOTO EOJ.

 PRINT insured.

 ADD '1' TO total.

 IF total > '005'

 GOTO EOJ.

 GOTO loop.
DUMPV and DUMP
PURPOSE:

To print vertical dumps of records in 100 byte line groups.
DESCRIPTION:

(tag)
DUMPV ddname-in (.)

DUMP
SPECIAL NOTES:
The DUMPV command initiates report for output displays. Data set name, volume serial number, create date, and other report title information are automatically printed.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to printed.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* id, number, defined *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

mstnum DEFINES (F=mstdd,L=5,P=5) *rec number loc

* dump all except 12345 *

start READ mstdd. *read next rec

 IF mstnum EQUAL '12345' *if rec

 DELETE mstdd. * skip it

 DUMPV mstdd. *dump record

 GOTO start. *loop until done

DUMPH
PURPOSE:
To print horizontal dump of records in standard core dump 32 byte line groups.

DESCRIPTION:

(tag) DUMPH ddname-in (.)

SPECIAL NOTES:
The DUMPH command initiates report for output displays. Data set name, volume serial number, create date, and other report title information are automatically printed.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to print.

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* id, number, defines *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

mstnum DEFINES (F=mstdd,L=5,P=5) *rec number loc

* core dump style all but 12345 *

start READ mstdd. *read next mst

 IF mstnum EQUAL '123456' *if num

 DELETE mstdd. * skip it

 DUMPH mstdd. *core dump rec

 GOTO start. *loop until done
DYNALLOC
PURPOSE:

To dynamically allocate files for input or output.

DESCRIPTION:

(tag) DYNALLOC ddname (USING) field, ...field (-) (.)

SPECIAL NOTES:
Dynamic allocation of files and sysout formats are initiated by Eagle88 by this verb. This is similar to the TSO allocate command except instead of keywords like UNIT(TESTA), Eagle88 passes binary request text blocks native to IBM processing.

The command DYNALLOC is a straight call to the service routine SVC 99 and passing the fields in the USING portion of the command. The command itself is not complex, but the native parameter fields required by the SVC 99 service routine is difficult. However, having Eagle88 be a simple pass through to SVC99, insures future compatability for MVS operating system changes. The IBM manual called System Programming Library: Job Management GC28-1303 is the best reference material for understanding dynamic file allocation. You will need a copy to translate a file attributes into their binary hex operation codes and the text area layouts.

Now for the good news, DYNALLOC supports all file allocation features available from MVS. For example, if you wish to read an input report file and split the output into different sysout classes, you can. You can read a file and dynamicly split it into multple file names and output devices. Tape, disk, diskette, sysout are simply changes in the unit parameter. The Eagle88 commands are the same, but the request block text fields passed will specify the changes.

The basic process of using dynamic allocation in Eagle88 is to ...(1) define and initialize the allocation text blocks, (2) issue the DYNALLOC command using the text blocks, (3) check the return codes for errors, (3) issue the DYNOPEN command to open the file, (4) issue normal READ, WRITE Eagle88 verbs on the files, (5) issue the DYCLOSE command to close the file, (6) optionally you may free the file by deallocating using another DYALLOC command to process in a loop. The DYNOPEN and DYNCLOSE verbs are Eagle88 specific commands to assist other Eagle88 commands. The DYNALLOC command is, as mentioned above, a straight pass through to SVC 99.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the file ddname to use.

USING

is an optional verb for ease of reading the statement.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" - "

used to allow multiple cards.

" . "

will delimit an IF statement set.

SAMPLE:
This sample reads in a list of account numbers. It produces a unique file name based on the list and writes detail records to each file. JCL dd files are not needed because of the dynamic allocation.

Your code can be simplified and reduced by defining hex strings for the file dispositions and file attributes. The hex literals can be passes instead of defining all the text layouts and initializing them. The only layout you really need is for the variable dataset name (See the sample section for this technique). We explicitly defined the text areas in this sample in order to relate better to the IBM Job Management manual.
//STEP1 EXEC EAGLE

//LIST DD *

ACCT1 THESE ACCOUNT NUMBERS WILL BE USED IN THE DATASET NAME

ACCT2 "TEST.XXXXX.OUTLIST"

ACCT3

ACCT4

//DATA DD *

DETAIL REC1 THESE RECORDS WILL BE WRITTEN TO EACH DYNAMIC FILE

DETAIL REC2

DETAIL REC3

//SYSIN DD *

* INPUT RECORDS *

ACCTNUM DEFINES (F=LIST,P=1,L=5)

DATAREC DEFINES (F=DATA,P=1,L=80)

* DYNALLOC REQUEST BLOCK FOR INFO MESSAGES *

WORK1 DEFAREA SIZE=2000

REQBLOCK DEFINES (F=WORK1,P=1,L=20)

REQBSIZE DEFINES (F=WORK1,P=1,L=1,T=X)

REQBVERB DEFINES (F=WORK1,P=2,L=1,T=X)

REQBFLG1 DEFINES (F=WORK1,P=3,L=2,T=X)

REQBERR DEFINES (F=WORK1,P=5,L=2,T=X)

REQBINFO DEFINES (F=WORK1,P=7,L=2,T=X)

REQBTEXT DEFINES (F=WORK1,P=9,L=4,T=X)

REQBRSRV DEFINES (F=WORK1,P=13,L=4,T=X)

REQBFLG2 DEFINES (F=WORK1,P=17,L=4,T=X)

* DYNALLOC REQUEST TEXT AREA *

TEXT1 DEFINES (F=WORK1,P=101,L=14)

TXT1KEY DEFINES (F=WORK1,P=101,L=2,T=X)

TXT1# DEFINES (F=WORK1,P=103,L=2,T=X)

TXT1LEN DEFINES (F=WORK1,P=105,L=2,T=X)

TXT1DATA DEFINES (F=WORK1,P=107,L=6,T=C)

TEXT2 DEFINES (F=WORK1,P=201,L=24)

TXT2KEY DEFINES (F=WORK1,P=201,L=2,T=X)

TXT2# DEFINES (F=WORK1,P=203,L=2,T=X)

TXT2LEN DEFINES (F=WORK1,P=205,L=2,T=X)

TXT2DATA DEFINES (F=WORK1,P=207,L=18,T=C)

TXT2ACCT DEFINES (F=WORK1,P=212,L=5,T=C)

TEXT3 DEFINES (F=WORK1,P=301,L=7)

TXT3KEY DEFINES (F=WORK1,P=301,L=2,T=X)

TXT3# DEFINES (F=WORK1,P=303,L=2,T=X)

TXT3LEN DEFINES (F=WORK1,P=305,L=2,T=X)

TXT3DATA DEFINES (F=WORK1,P=307,L=1,T=X)

TEXT4 DEFINES (F=WORK1,P=401,L=7)

TXT4KEY DEFINES (F=WORK1,P=401,L=2,T=X)

TXT4# DEFINES (F=WORK1,P=403,L=2,T=X)

TXT4LEN DEFINES (F=WORK1,P=405,L=2,T=X)

TXT4DATA DEFINES (F=WORK1,P=407,L=1,T=X)

TEXT5 DEFINES (F=WORK1,P=501,L=7)

TXT5KEY DEFINES (F=WORK1,P=501,L=2,T=X)

TXT5# DEFINES (F=WORK1,P=503,L=2,T=X)

TXT5LEN DEFINES (F=WORK1,P=505,L=2,T=X)

TXT5DATA DEFINES (F=WORK1,P=507,L=1,T=X)

TEXT6 DEFINES (F=WORK1,P=601,L=10)

TXT6KEY DEFINES (F=WORK1,P=601,L=2,T=X)

TXT6# DEFINES (F=WORK1,P=603,L=2,T=X)

TXT6LEN DEFINES (F=WORK1,P=605,L=2,T=X)

TXT6DATA DEFINES (F=WORK1,P=607,L=4,T=C)

TEXT7 DEFINES (F=WORK1,P=701,L=4)

TXT7KEY DEFINES (F=WORK1,P=701,L=2,T=X)

TXT7# DEFINES (F=WORK1,P=703,L=2,T=X)

TEXT8 DEFINES (F=WORK1,P=801,L=9)

TXT8KEY DEFINES (F=WORK1,P=801,L=2,T=X)

TXT8# DEFINES (F=WORK1,P=803,L=2,T=X)

TXT8LEN DEFINES (F=WORK1,P=805,L=2,T=X)

TXT8DATA DEFINES (F=WORK1,P=807,L=3,T=X)

TEXT9 DEFINES (F=WORK1,P=901,L=8)

TXT9KEY DEFINES (F=WORK1,P=901,L=2,T=X)

TXT9# DEFINES (F=WORK1,P=903,L=2,T=X)

TXT9LEN DEFINES (F=WORK1,P=905,L=2,T=X)

TXT9DATA DEFINES (F=WORK1,P=907,L=2,T=X)

TEXTA DEFINES (F=WORK1,P=1001,L=8)

TXTAKEY DEFINES (F=WORK1,P=1001,L=2,T=X)

TXTA# DEFINES (F=WORK1,P=1003,L=2,T=X)

TXTALEN DEFINES (F=WORK1,P=1005,L=2,T=X)

TXTADATA DEFINES (F=WORK1,P=1007,L=2,T=X)

TEXTB DEFINES (F=WORK1,P=1101,L=7)

TXTBKEY DEFINES (F=WORK1,P=1101,L=2,T=X)

TXTB# DEFINES (F=WORK1,P=1103,L=2,T=X)

TXTBLEN DEFINES (F=WORK1,P=1105,L=2,T=X)

TXTBDATA DEFINES (F=WORK1,P=1107,L=1,T=X)

TEXTC DEFINES (F=WORK1,P=1201,L=7)

TXTCKEY DEFINES (F=WORK1,P=1201,L=2,T=X)

TXTC# DEFINES (F=WORK1,P=1203,L=2,T=X)

TXTCLEN DEFINES (F=WORK1,P=1205,L=2,T=X)

TXTCDATA DEFINES (F=WORK1,P=1207,L=1,T=X)

TEXTD DEFINES (F=WORK1,P=1301,L=7)

TXTDKEY DEFINES (F=WORK1,P=1301,L=2,T=X)

TXTD# DEFINES (F=WORK1,P=1303,L=2,T=X)

TXTDLEN DEFINES (F=WORK1,P=1305,L=2,T=X)

TXTDDATA DEFINES (F=WORK1,P=1307,L=1,T=X)

TEXTE DEFINES (F=WORK1,P=1401,L=7)

TXTEKEY DEFINES (F=WORK1,P=1401,L=2,T=X)

TXTE# DEFINES (F=WORK1,P=1403,L=2,T=X)

TXTELEN DEFINES (F=WORK1,P=1405,L=2,T=X)

TXTEDATA DEFINES (F=WORK1,P=1407,L=1,T=X)

**

* Eagle88 PROCEDURE COMMANDS - INIT *

* DYNAMIC REQUEST BLOCKS *

**

 CVTBIN '01' TO TXT1KEY. *REQUEST DDNAME (HEX CODE=0001)

 CVTBIN '01' TO TXT1#. *1 INDICATES 1 FIELD IN TEXT AREA

 CVTBIN '06' TO TXT1LEN. *6 IS THE SIZE OF THE DDNAME FIELD

 MOVE 'OUTPUT' TO TXT1DATA. *"OUTPUT" WILL BE THE DYNAMIC DD

 CVTBIN '02' TO TXT2KEY. *TO THIS DATASET NAME (HEX =0002)

 CVTBIN '01' TO TXT2#. *1 FIELD IN TEXT AREA

 CVTBIN '18' TO TXT2LEN. *18 SIZE OF THE DATASET NAME

 MOVE 'TEST.ACCTX.OUTLIST' TO TXT2DATA.

 CVTBIN '04' TO TXT3KEY. *DISP=(NEW,---,---) INITIAL DISP

 CVTBIN '01' TO TXT3#. *1 FIELD IN TEXT AREA

 CVTBIN '01' TO TXT3LEN. *1 BYTE LONG

 CVTBIN '04' TO TXT3DATA. *NEW = HEX CODE 04

 CVTBIN '05' TO TXT4KEY. *DISP=(---,CATLG NORMAL COMPLETION

 CVTBIN '01' TO TXT4#. *1 FIELD

 CVTBIN '01' TO TXT4LEN. *1 BYTE LONG

 CVTBIN '02' TO TXT4DATA. *CATLG = HEX CODE 02

 CVTBIN '06' TO TXT5KEY. *DISP=(---,---,DELETE) ABEND COMPL

 CVTBIN '01' TO TXT5#. *1 FIELD

 CVTBIN '01' TO TXT5LEN. *1 BYTE LONG TEXT AREA

 CVTBIN '04' TO TXT5DATA. *DELETE = HEX CODE 04

 MOVE X'0015' TO TXT6KEY. *UNIT=TEST

 CVTBIN '01' TO TXT6#. *

 CVTBIN '04' TO TXT6LEN. *UNIT VALUE SUCH AS TAPE, DISK,

 MOVE 'TEST' TO TXT6DATA. * TEST, PROD, DSKET, ETC

 MOVE X'0007' TO TXT7KEY. *SPACE=TRACKS

 CVTBIN '00' TO TXT7#.

 MOVE X'000A' TO TXT8KEY. *SPACE PRIMARY 5 TRKS

 CVTBIN '01' TO TXT8#.

 CVTBIN '03' TO TXT8LEN.

 CVTBIN '05' TO TXT8DATA.

 MOVE X'0030' TO TXT9KEY. *BLKSIZE =8000

 CVTBIN '01' TO TXT9#.

 CVTBIN '02' TO TXT9LEN.

 CVTBIN '8000' TO TXT9DATA.

 MOVE X'0042' TO TXTAKEY. *LRECL =80

 CVTBIN '01' TO TXTA#.

 CVTBIN '02' TO TXTALEN.

 CVTBIN '80' TO TXTADATA.

 MOVE X'0049' TO TXTBKEY. *RECFM= X'10' + '80'

 CVTBIN '01' TO TXTB#.

 CVTBIN '01' TO TXTBLEN.

 MOVE X'90' TO TXTBDATA.

 CVTBIN '04' TO TXTCKEY. *DISP=(MOD,

 CVTBIN '01' TO TXTC#.

 CVTBIN '01' TO TXTCLEN.

 CVTBIN '02' TO TXTCDATA.

 CVTBIN '05' TO TXTDKEY. *DISP=(MOD,DELETE

 CVTBIN '01' TO TXTD#.

 CVTBIN '01' TO TXTDLEN.

 CVTBIN '04' TO TXTDDATA.

 CVTBIN '06' TO TXTEKEY. *DISP=(MOD,DELETE,DELETE)

 CVTBIN '01' TO TXTE#.

 CVTBIN '01' TO TXTELEN.

 CVTBIN '04' TO TXTEDATA.

 CVTBIN '20' TO REQBSIZE.

 CVTBIN '01' TO REQBVERB. *REQUEST ALLOC DDNAME

 CVTBIN '00' TO REQBFLG1.

 CVTBIN '00' TO REQBERR.

 CVTBIN '00' TO REQBINFO.

 CVTBIN '00' TO REQBTEXT.

 CVTBIN '00' TO REQBRSRV.

 CVTBIN '00' TO REQBFLG2.

 DUMP WORK1. *DUMP THE PARAMETERS TO VERIFY CODES

**

* Eagle88 PROCESS LOOP *

**

* FOR EVERY ACCT ON THE LIST FILE *

* DELETE A VARIABLE FILE NAME IF EXISTS*

* CREATE A VARIABLE DATASET NAME *

* "TEST.XXXXX.OUTLIST" *

* WRITE THE DETAIL RECS TO EACH FILE *

* LOOP FOR NEXT ACCOUNT *

**

LOOP1 READ LIST. *READ THE CONTROL LIST

 IF RECORDSW OF LIST = 'Y' *IF DONE, STOP JOB

 GOTO EOJ. *

 MOVE ACCTNUM TO TXT2ACCT *

 EXHIBIT 'BUILDING FILE:' *DISPLAY THE FILE NAME

 EXHIBIT TXT2DATA *

 CVTBIN '01' TO REQBVERB. *REQUEST ALLOC DSNAME "MOD"

** *DELETE THE FILE IF PRESENT
 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXTC, TEXTD, -

 TEXTE, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.
 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR * DELETING A NON-EXISTING FILE

 EXHIBIT REQBINFO. * WILL GIVE A MESSAGE

 CVTBIN '02' TO REQBVERB. *REQUEST DEALLOCATE DSNAME

** *DELETE THE FILE IF PRESENT
 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2.
 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

** *ALLOCATE THE FILE

 CVTBIN '01' TO REQBVERB. *REQUEST ALLOC DSNAME
 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXT3, TEXT4, -

 TEXT5, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.
 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

 DYNOPEN OUTPUT. *OPEN THE DYNAMIC FILE

**

* OUTPUT THE GIVEN FILE *

**

LOOP2 READ DATA. *

 IF RECORDSW OF DATA = 'Y' *

 DYNCLOSE OUTPUT *CLOSE THE DYNAMIC FILE

 CVTBIN '02' TO REQBVERB *REQUEST DEALLOCATE DSNAME
 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2
 RESTART DATA *

 GOTO LOOP1. *

 WRITE OUTPUT FROM DATA. *OUTPUT THE DATA RECORD

 GOTO LOOP2. *

//

DYNCLOSE
PURPOSE:

To dynamically close a file that was opened using DYNOPEN and previously

allocated using DYNALLOC.

DESCRIPTION:

(tag) DYNCLOSE ddname (.)

SPECIAL NOTES:
This verb is used in conjunction with the DYNALLOC. Please see the DYNALLOC special notes.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the file ddname to close.

" . "

will delimit an IF statement set.

SAMPLE:

 (Partial sample.....see DYNALLOC for complete sample)

**

* Eagle88 PROCESS LOOP *

**

* FOR EVERY ACCT ON THE LIST FILE *

* DELETE A VARIABLE FILE NAME IF EXISTS*

* CREATE A VARIABLE DATASET NAME *

* "TEST.XXXXX.OUTLIST" *

* WRITE THE DETAIL RECS TO EACH FILE *

* LOOP FOR NEXT ACCOUNT *

**

LOOP1 READ LIST. *READ THE CONTROL LIST

 IF RECORDSW OF LIST = 'Y' *IF DONE, STOP JOB

 GOTO EOJ. *

 MOVE ACCTNUM TO TXT2ACCT *

** *ALLOCATE THE FILE

 CVTBIN '01' TO REQBVERB. *REQUEST ALLOC DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXT3, TEXT4, -

 TEXT5, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.

 DYNOPEN OUTPUT. *OPEN THE DYNAMIC FILE

LOOP2 READ DATA. *

 IF RECORDSW OF DATA = 'Y' *
 DYNCLOSE OUTPUT *CLOSE THE DYNAMIC FILE
 CVTBIN '02' TO REQBVERB *REQUEST DEALLOCATE DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2

 RESTART DATA *

 GOTO LOOP1. *

 WRITE OUTPUT FROM DATA. *OUTPUT THE DATA RECORD

 GOTO LOOP2. *
DYNOPEN
PURPOSE:

To dynamically open a file that was previously allocated using DYNALLOC.

DESCRIPTION:

(tag) DYNOPEN ddname (.)

SPECIAL NOTES:
This verb is used in conjunction with the DYNALLOC. Please see the DYNALLOC special notes.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the file ddname to open.

" . "

will delimit an IF statement set.

SAMPLE:

 (Partial sample.....see DYNALLOC for complete sample)

**

* Eagle88 PROCESS LOOP *

**

* FOR EVERY ACCT ON THE LIST FILE *

* DELETE A VARIABLE FILE NAME IF EXISTS*

* CREATE A VARIABLE DATASET NAME *

* "TEST.XXXXX.OUTLIST" *

* WRITE THE DETAIL RECS TO EACH FILE *

* LOOP FOR NEXT ACCOUNT *

**

LOOP1 READ LIST. *READ THE CONTROL LIST

 IF RECORDSW OF LIST = 'Y' *IF DONE, STOP JOB

 GOTO EOJ. *

 MOVE ACCTNUM TO TXT2ACCT *

** *ALLOCATE THE FILE

 CVTBIN '01' TO REQBVERB. *REQUEST ALLOC DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXT3, TEXT4, -

 TEXT5, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.
 DYNOPEN OUTPUT. *OPEN THE DYNAMIC FILE
LOOP2 READ DATA. *

 IF RECORDSW OF DATA = 'Y' *

 DYNCLOSE OUTPUT *CLOSE THE DYNAMIC FILE

 CVTBIN '02' TO REQBVERB *REQUEST DEALLOCATE DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2

 RESTART DATA *

 GOTO LOOP1. *

 WRITE OUTPUT FROM DATA. *OUTPUT THE DATA RECORD

 GOTO LOOP2. *
EDIT
PURPOSE:
To move data with automatic shifting of the record's data. Used for JCL or source code

data replacement needs.
DESCRIPTION:

(tag) EDIT field (TO) field (.)

SPECIAL NOTES:
EDIT is identical to a MOVE verb request except when the sending field and the receiving field have differ​ent lengths. When the sending field is smaller, the data is replaced and shifted to the left. When the sending field is larger, the data is inserted into the record shifting to the right using excess blanks. This process is equivalent to a text editor "replace" or "change" request.

Overflow messages will appear on report R01 if a right shift request does not have enough excess blanks to be satisfied.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1.......up to col 71

* edit sample *

newut DEFINES C'WK1' *new unit

oldut DEFINES (F=in,P=LOC,L=5) *unit data

slash DEFINES (F=in,P=1,L=2) *slash

start READ in. *read rec

 SCANTEST in FOR 'SYSDK'. *scan for value

 IF SCANHIT OF in = 'Y' *if found

 EDIT newut TO oldut * replace unit

 EDIT '//*' TO slash. * comment out

 WRITE out FROM in. *

 GOTO start. *loop
ENCODE
PURPOSE:
To encrypt data records or individual fields by reformatting the data into unreadable

binary values.
DESCRIPTION:

(tag) ENCODE ddname-in (USING) field (.)

SPECIAL NOTES:
ENCODE will encrypt data records by using an eight byte key to seed the encryption processor. Max record size for processing is 256 either fixed or variable record formats. Individual field encryption is possible. Password must be 8 bytes is size. See Sample 66 for details.

Several encoding techniques are allowed beyond the normal single encode request as shown in the sample below. One of these techniques is to use multiple ENCODE verbs prior to writing the record. The net effect is to encode the previously encoded record.

A second technique involves the encoding records by using a counter to change the password key for each individual record. Using this approach provides the best protection as each record has a maximum of 256 to the power of 8, decode combinations plus the ability to employ a multiple of encode requests. In order to decode the file, simply substitute the ENCODE verb for DECODE and reprocess the file.

Word of caution.....do not modify an encoded record, shorten the record lengths, or formats (VB to FB etc). The encode/decode facility rely on record lengths.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* encrypt admin memo members *

password DEFINES 'TENNIS ' *encryption key

loop READPDS textin FOR admin*** *read members

 ENCODE textin USING password. *encode rec

 WRITEPDS textout FROM textin. *rewrite mem

 GOTO loop.
ERASE
PURPOSE:

To delete database records.

ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:
(tag)
ERASE
field
(PERMANENT MEMBERS)
(.)

(SELECTIVE MEMBERS)

(ALL MEMBERS)
SPECIAL NOTES:
Database records deleted are not committed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to delete records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 PRINT umtcxfr * yes-print record

 ERASE rc1name * -delete the record

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
EXEC SQL END-EXEC
PURPOSE:

To pass IBM's DB2 SQL syntax to the dynamic SQL processor.
ENVIRONMENT:
DB2 data base manager only.
DESCRIPTION:

(tag)
EXEC SQL

...q END-EXEC($ (.)SPECIAL NOTES:
EXEC SQL is the keyword Eagle88 uses to begin loading the SQL buffer and begin the dynamic pre​processor. When the END-EXEC is found, the load is complete and prep/bind process begins. Anything in between those two keywords is considered SQL syntax and follows IBM's SQL format. Therefore, Eagle88 comments and syntax style is not active between the EXEC SQL and the END-EXEC.

Eagle88 provides substitutions of variables by using the ":" colon. The Eagle88 label following the colon will be replaced by the data value or literal currently in memory at the time of execution. Substitu​tion is normally done for the WHERE clause of selects and the INTO clause. However, you may request substitution of table names, data element names, or entire SQL statements. Variables of table names can be read from a control file and used to invoke a general purpose dump routine, if desired.

There are limitations on the verbs that can be handled by dynamic SQL. See the DB2 Application guide on verb limitation for dynamic SQL. Eagle88 has a maximum of 10 separate cursors per run. To access IMS and DB2 in the same run, use proc EAGLEIMS. IDMS and DB2 use the standard EAGLE proc.

"tag"

a tag name up to 8 characters used for GOTO branching.

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

* db2 record dump *

account DEFAREA SIZE=220 *memory workarea

rec1work DEFINES (F=account,P=1,L=220) *full work size

acctid DEFINES (F=account,P=1,L=5) *acct id

acctname DEFINES (F=account,P=6,L=40) *acct name

acctbal DEFINES (F=account,P=46,L=8,T=P) *acct amount

date DEFINES '05/12/1990' *search date

 DB2-CONNECT SYSTEM=DB2T. *connect to db2

 EXEC SQL DECLARE cur1 CURSOR

 SELECT account_id, account_name, beg_balance

 FROM db2.paxkact

 WHERE CHAR(account_date,USA) = :date END-EXEC.

* *open cursor

 EXEC SQL OPEN cur1 END-EXEC.

* *read first row

loop EXEC SQL FETCH cur1

 INTO :acctid, :acctname, :acctbal END-EXEC.

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT SQLCODE * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF account. *manually up counts

 PRINT account. *print record

 DUMP account. *dump record

 GOTO loop. *loop for more

done EXEC SQL CLOSE cur1 END-EXEC. *close cursor

 DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF account. *

 GOTO EOJ. *shutdown
EXHIBIT
PURPOSE:

To display a data field.
DESCRIPTION:

(tag) EXHIBIT field (.)

SPECIAL NOTES:
EXHIBIT displays a field on report R01. Character data is moved and printed. Packed numeric and binary fields are converted and printed in display format.

Definition of a field type comes from the TYPE Keyword or literal definition. See DEFINES verb for more information.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1up to col 71

* edit sample *

title DEFINES C'DEMO DISPLAY' *new unit

amount DEFINES (F=in,P=5,L=6,T=P) *unit data

rdw DEFINES (F=in,P=1,L=2,T=X) *slash

start READ in. *read rec

 EXHIBIT ' '. *display

 EXHIBIT title. *display

 EXHIBIT amount. *display

 EXHIBIT rdw. *display

 GOTO start. *loop
FIND
PURPOSE:

To locate an IDMS database record, but only set a pointer.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:
Format 1.

(tag)
FIND (KEEP) (EXCLUSIVE) (FIRST) field (WITHIN) (AREA) field
(.)

(LAST)

(PRIOR)

(NEXT)

Format 2.

(tag)
FIND (KEEP) (EXCLUSIVE) (CURRENT)
WITHIN (AREA)
field
(.)

(FIRST)

(LAST)

(NEXT)

(PRIOR)

(OWNER)

(DBKEY)

(DUPLICATE)

Other Formats:

(tag)
FIND (KEEP) (EXCLUSIVE)
field
DB-KEY IS
field
(.)

(tag)
FIND (KEEP) (EXCLUSIVE)
field
WITHIN

field
CURRENT USING
field
(.)

(tag)
FIND (KEEP) (EXCLUSIVE)
field
fieldWITHIN (AREA) field (.)

(tag)
FIND (KEEP) (EXCLUSIVE) CALC (ANY) (.)

SPECIAL NOTES:
FIND is the verb to access IDMS database records. It's command syntax is the same as the OBTAIN, but the result is only a pointer to the record. FIND is used walk the record paths without the slow down of transfering data into working storage. See OBTAIN for related information.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to dump selected record *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 FIND FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF COUNTIN OF umtcxfr = '56' *if 56th record

 OBTAIN CURRENT rc1name *yes-read for data

 PRINT umtcxfr * -print record

 DUMP umtcxfr * -dump record

 GOTO done. * -terminate

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 FIND NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown

 PROCESS:

o The DEFAREA creates a buffer area to receive the database record.

o Connect to IDMS by binding the run-unit to the database and DML subschema.

 LRF subschemas are not supported.

o Indicate where the record is to be stored.

o READY the area in read mode or update mode.

o Locate records, test for status codes. On the 56th record, print and dump it.

o When the status is not zeros, disconnect from IDMS with the FINISH verb and terminate the

 task by using GOTO EOJ.

FINISH
PURPOSE:

To disconnect task from the IDMS data manager.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
FINISH
(.)

SPECIAL NOTES:
FINISH is the IDMS verb to terminate connection to the database manager and free its related resources.

"tag"

a name up to 8 characters for GOTO branching.

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to dump out records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
GET
PURPOSE:

To move record data into storage using the current pointer.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
GET
(field)
(.)

SPECIAL NOTES:
This verb is used with the FIND verb to transfer the desired record data. By issuing FINDs, the data manager does not have to physically move data, making data searches/scans faster. Once the desired record is found, issue the GET to request the data transfer.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms GET sample *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 amount DEFINES (F=umtcxfr,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 FIND FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF COUNTIN OF umntcxfr = '40' *if record number found

 GET umtcxfr * yes-get data

 PRINT umtcxfr * -print record

 MOVE P'+00012060048' * -zap the data

 MODIFY rc1name * -update the record

 PRINT umtcxfr * -print after image

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 FIND NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
GOTO
PURPOSE:

To branch to selected process statements or end of job.
DESCRIPTION:

(tag) GOTO

|tag | (.)

|EOJ|
SPECIAL NOTES:
GOTO will branch to another command statement as requested.

"tag"

a name up to 8 characters for GOTO branching.

"EOJ"

is the special tag to stop processing.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* id and limit defined *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loclimit DEFINES '100' *rec count limit

* read 100 recs, select & write *

start READ mstdd. *read next mst

 IF COUNTIN OF mstdd > limit *if 100 rec read

 GOTO EOJ. * Yes-stop job

 IF mstid EQUAL '88' *if rec type found

 WRITE mstout FROM mstdd. * write record

 GOTO start. *loop until done

IDMS-CONNECT
PURPOSE:

Used to include a record in a given path chain.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
IDMS-CONNECT
field
(.)

SPECIAL NOTES:
Database records inserted but not committed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms insert transactions under a given tran type *

 txntype DEFAREA SIZE=100 *memory workarea

 txndtl DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=txntype,P=1,L=100) *full work size

 txnid DEFINES (F=txntype,P=1,L=5) *tran id

 extract DEFINES (F=filein,P=1,L=100) *flat file extracts

 rec2work DEFINES (F=txndtl,P=1,L=100) *full work size

 amount DEFINES (F=txndtl,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'txntype ' *parent name - 16 bytes

 rc2name DEFINES 'txndtl ' *detail name - 16 bytes

 path1 DEFINES 'txntype-txndtl ' *path name - 16 bytes

 ar1name DEFINES 'txn-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 BIND rc2name TO rc2work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 READ filein. *read flat file of extracts

 PRINT trndtl. *print image

 MOVE extract TO rc2work. *load data to work

 STORE rc2name. *insert database record

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 MOVE 'C4123' TO txnid. *pre set tran id

 OBTAIN CALC rc1name. *read direct key on txnid

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 IDMS-CONNECT rc2name TO rc1name. *assign detail to group

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 EPILOGUE FINISH. *terminate DBMS

 GOTO EOJ. *shutdown

IDMS-DISCONNECT
PURPOSE:

Used to disconnect a record from a given path.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
IDMS-DISCONNECT
field
(.)

SPECIAL NOTES:
Database records inserted but not committed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms disconnect a transaction record *

 txntype DEFAREA SIZE=100 *memory workarea

 txndtl DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=txntype,P=1,L=100) *full work size

 txnid DEFINES (F=txntype,P=1,L=5) *tran id

 rec2work DEFINES (F=txndtl,P=1,L=100) *full work size

 amount DEFINES (F=txndtl,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'txntype ' *parent name - 16 bytes

 rc2name DEFINES 'txndtl ' *detail name - 16 bytes

 path1 DEFINES 'txntype-txndtl ' *path name - 16 bytes

 ar1name DEFINES 'txn-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 BIND rc2name TO rc2work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 MOVE 'C4123' TO txnid. *pre set tran id

 OBTAIN CALC rc1name. *read direct key on txnid

 OBTAIN FIRST rc2name WITHIN path1. *read first detail

 MOVE 'C1223' TO txniddtl. *reset data

 MODIFY rc2name. *update database record

 PRINT trndtl. *print image

 IDMS-DISCONNECT rc2name FROM rc1name. *re-assign detail group

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 MOVE 'C1223' TO txnid. *pre set tran id

 OBTAIN CALC rc1name. *read direct key on txnid

 IDMS-CONNECT rc2name TO rc1name. *assign detail to new group

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 EPILOGUE FINISH. *terminate DBMS

 GOTO EOJ. *shutdown

IDMS-IF
PURPOSE:

Test to see if the path specified has any record occurances.
ENVIRONMENT:
IDMS data base manager only.

DESCRIPTION:

(tag)
IDMS-IF (NOT) field
(MEMBER)
(.)

(IS EMPTY)

(IS NOT EMPTY)

SPECIAL NOTES:
Use the IDMS-STATUS to determine the results of the IDMS-IF request. A code 0000 is a true response. A 0001 is a false response to your request.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms use of the IDMS-IF verb *

 txntype DEFAREA SIZE=100 *memory workarea

 txndtl DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=txntype,P=1,L=100) *full work size

 txnid DEFINES (F=txntype,P=1,L=5) *tran id

 rec2work DEFINES (F=txndtl,P=1,L=100) *full work size

 amount DEFINES (F=txndtl,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'txntype ' *parent name - 16 bytes

 rc2name DEFINES 'txndtl ' *detail name - 16 bytes

 path1 DEFINES 'txntype-txndtl ' *path name - 16 bytes

 ar1name DEFINES 'txn-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 BIND rc2name TO rc2work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 MOVE 'C4123' TO txnid. *pre set tran id

 OBTAIN CALC rc1name. *read direct key on txnid

 IDMS-IF path1 IS NOT EMPTY *if full path

 IF IDMS-STATUS = '0000' * yes-has members

 ERASE path1 ALL MEMBERS. * -erase all members

 EPILOGUE FINISH. *terminate DBMS

 GOTO EOJ. *shutdown

IDMS-RETURN
PURPOSE:

To return the DB KEY for the specified record.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
IDMS-RETURN
field
FROM
field
(CURRENCY)
(.)

(FIRST)

(LAST)

(NEXT)

(PRIOR)

(USING field)
SPECIAL NOTES:
The first field is the db key and should be a 4 byte hex field.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms use of the IDMS-RETURN verb *

 txntype DEFAREA SIZE=100 *memory workarea

 txndtl DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=txntype,P=1,L=100) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'txntype ' *parent name - 16 bytes

 ar1name DEFINES 'txn-area ' *area name - 16 bytes

 dbkeyfld DEFINES X'00000000' *dbkey field work

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name. *browse mode

 IDMS-RETURN dbkeyfld FROM rc1name NEXT. *get next dbkey

 OBTAIN rc1name DB-KEY IS dbkeyfld. *read next using the dbkey

 PRINT trandtl. *print image

 EPILOGUE FINISH. *terminate DBMS

 GOTO EOJ. *shutdown
IF
PURPOSE:

To selectively process input files based on data or count tests.

DESCRIPTION:

 (tag) IF |field

||EQUAL (TO)
||field

 |

|LOC OF ddname

||NOT EQUAL
||LOC OF ddname
 |

|VAR OF ddname

||LESS THAN

||VAR OF ddname
 |

|COUNTIN OF ddname
||NOT LESS

||COUNTIN OF ddname |

|COUNTOUT OF ddname
||GREATER THAN
||COUNTOUT OF ddname |

|COUNTDEL OF ddname
||NOT GREATER
||COUNTDEL OF ddname |

|RECORDSW OF ddname
|| =, NOT =

||RECORDSW OF ddname|

|SCANHIT OF ddname
|| <, NOT <

||SCANHIT OF ddname |

|MEMNAME OF ddname
|| >, NOT >

||MEMNAME OF ddname|

|(NOT) NUMERIC
|
SPECIAL NOTES:
The "IF" statement is similar to COBOL's but does not allow "ELSE" conditions or the use of connecting verbs such as "OR" or "AND". However, "AND" can be accomplished by nesting; and "OR" can be accom​plished by multiple IF statements.

Nesting may be done to any number of levels. Periods will delimit the statement command group range. "IF" statements may be used only on input file record areas, (exception of tests on an output file's record count).

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), the IF command is designed to recognize this condition and skip the request.

"IF" relies on the TYPE code to determine the test conditions to perform. Character to character type compares are byte to byte tests. Mixed type tests will attempt to automatically convert the fields into a common format before testing is done. Mixed type tests do not need to be of equal lengths. For example a hex field 1 byte in length with a value of +2 will be equal to a packed field length of 6 with a value of +2. A warning message will appear on R01 for non-numeric data values, but processing will continue.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement,a data value constant, or the explicit

usage of file, length,

and position info (see DEFINES).

" . "

will delimit an IF statement set.

"VAR"

the adjustable 4 byte binary length value for LEN=VAR

"LOC"

the adjustable 4 byte binary position value for POS=LOC

"COUNTIN"
records in count for an input file a packed 4 bytes.

"COUNTOUT"
records out count for an output file a packed 4 bytes.

"COUNTDEL"
records deleted count for an input file a packed 4.

"RECORDSW"
eof, rec status indicator (Y=eof, P=present, E=empty).

"SCANHIT"
SCANTEST indicator (Y=hit, space=no hit).

"MEMNAME"
READPDS's member name storage an 8 byte field.

SAMPLE:

* output 100 selected records *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

limit DEFINES C'100' *rec count limit

* 100 recs, select & write *

start READ mstdd. *read next mst

 IF COUNTOUT of mstout > limit *if 100 rec written

 GOTO EOJ. * Yes-stop job

 IF mstid NOT NUMERIC *if type invalid

 GOTO EOJ. * shut down

 IF mstid EQUAL '88' *if rec type found

 WRITE outmst from mstdd. * write record

 GOTO start. *loop for more
IFX
PURPOSE:
To selectively process input files based on data or count tests without converting

numeric field formats.

DESCRIPTION:
 (tag) IF |field

||EQUAL (TO)
||field

 |

|LOC OF ddname

||NOT EQUAL
||LOC OF ddname
 |

|VAR OF ddname

||LESS THAN

||VAR OF ddname
 |

|COUNTIN OF ddname
||NOT LESS

||COUNTIN OF ddname |

|COUNTOUT OF ddname
||GREATER THAN
||COUNTOUT OF ddname |

|COUNTDEL OF ddname
||NOT GREATER
||COUNTDEL OF ddname |

|RECORDSW OF ddname
|| =, NOT =

||RECORDSW OF ddname|

|SCANHIT OF ddname
|| <, NOT <

||SCANHIT OF ddname |

|MEMNAME OF ddname
|| >, NOT >

||MEMNAME OF ddname|

|(NOT) NUMERIC
|

SPECIAL NOTES:
The IFX verb is identical to the IF verb except no conversions are done to numeric fields. All comparisons are done byte for byte. See IF statement for more details.

Nesting may be done to any number of levels. Periods will delimit the statement command group range. IFX statements may be used only on input file record areas, (exception of tests on an output file's record count).

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), the IF command is designed to recognize this condition and skip the request.
SAMPLE: col 1up to col 71

* skip record id 23 *

mstid DEFINES (F=mstdd,L=2,P=1,T=P)

start READ mstdd. *read next mst

 IFX mstin = X'023C' *if id is 23

 GOTO start. * Yes-skip rec

 WRITE outmst from mstdd. *write out record

 GOTO start. *loop for more
KEEP
PURPOSE:

To place record locks on IDMS database records.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
KEEP
(EXCLUSIVE) (CURRENT) (WITHIN) (AREA) field
(.)

SPECIAL NOTES:
Database records released until a FINISH or COMMIT is issued. The "AREA" keyword has been added to assist Eagle88 in determining whether area or record name is being used in the field position.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

 SAMPLE: col 1 up to col 71

 * idms area sweep to update records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 amount DEFINES (F=umtcxfr,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 PRINT umtcxfr * yes-print record

 MOVE P'+00012060048' * -zap the data

 KEEP EXCLUSIVE CURRENT rc1name * -lock record

 MODIFY rc1name * -update the record

 PRINT umtcxfr * -print after image

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
LOADSRC
PURPOSE:

To load and compare source code using page split facility.
DESCRIPTION:

(tag) LOADSRC ddname-in (TO) ddname-in (EXPAND) (SIZE=nnnnn) (.)

SPECIAL NOTES:
LOADSRC will load ddname-a and ddname-b records into source code compare tables "old" vs "new" (ddname-a is old, ddname-b is new). When the desired number of records have been loaded, a COMPSRC compare request may be issued by the user. See COMPSRC for a further information.

The optional EXPAND parm is very useful to desk check the compared source code. EXPAND prints the entire old source code, allowing a more thorough check out showing which stmts matched.

The optional SIZE parameter is used to set the expected compare size and is specified in number of statements. For example, if you wish to compare a large COBOL program that has 11,430 lines of code, you would probably use SIZE=12000 and bump up your job region size. The default is 10,000 state​ments.

Although LOADSRC is one of a two part process to compare library member groups, it should also be used to compare a single source code set. The following example will process a single program. Files will load compare tables until both files are EOF. Eagle88 will then process its end of job logic and automatically request a compare of the tables before files are closed and stats reported.

SAMPLE: col 1 up to col 71

* source code compare *

reads READ before. *read source

 READ after. *code

 LOADSRC before after. *load table
 GOTO reads. *loop
MASKAND
PURPOSE:
Will set bits to 1 if the first field "AND" the second field bits are both 1. Bits are set to

zero if they are not both equal to 1.
DESCRIPTION:

(tag) MASKAND field (TO) field (.)

SPECIAL NOTES:
MASKAND is used to set bits for up to 255 byte field sizes. Bits are processed left to right and may overlap. An example of one byte "maskand"ing another:
0001 1111 If both bytes are 1's then

the result will be a 1. A mix of 1,0 gets a 0.

1110 1011

========

0000 1011

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* mask "and" request *

ind1 DEFINES (F=in,P=05,L=1)

ind2 DEFINES (F=in,P=21,L=1)

start READ in. *read next mst

 MASKAND ind1 TO ind2. *"and" byte

 WRITE out FROM in. *output rec

 GOTO start. *loop until done

MASKOR
PURPOSE:
Will set bits to 1 if the first field "OR" the second field bits are 1. Bits are set to

zero if they are both equal to 0.
DESCRIPTION:

(tag) MASKOR field (TO) field (.)

SPECIAL NOTES:

MASKOR is used to set bits for up to 255 byte field sizes. Bits are processed left to right and may overlap. An example of one byte "maskor"ing another:
0001 1111 If either byte is 1 then

the result will be a 1.

0110 1011

========

0111 1111

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* mask "or" request *

amt DEFINES (F=in,P=01,L=4,T=P)

sign DEFINES (F=in,P=4,L=1)

start READ in. *read next mst

 MASKOR X'0F' TO sign. *force "+" sign

 WRITE out FROM in. *output rec

 GOTO start. *loop until done
MODIFY
PURPOSE:

To update database records.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
MODIFY
field
(.)

SPECIAL NOTES:
Database records replaced but not committed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms area sweep to update records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 amount DEFINES (F=umtcxfr,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 PRINT umtcxfr * yes-print record

 MOVE P'+00012060048' TO amount * -zap the data

 MODIFY rc1name * -update the record

 PRINT umtcxfr * -print after image

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
MOVE
PURPOSE:
To modify or build data in an input record, WORKAREA, or member name field.
DESCRIPTION:
(tag)
MOVE

| field

 | (TO) | field

 | (.)

|MEMNAME OF ddname|
 |MEMNAME OF ddname|

SPECIAL NOTES:
MOVE transfers data one byte at a time to the designated location. Maximum length of fields is 32760 bytes. The sending and receiving fields may overlap. The command is designed to bypass processing if the file record designated is not available.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

"MEMNAME"
READPDS's member name storage 8 byte field. Panvalet libraries have 10 byte names.

" . "

will delimit an IF statement set.

SAMPLE: col 1up to col 71

* id and limit defined *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

* read and modify rec types 88 *

start READ mstdd. *read next mst

 IF mstid EQUAL '88' *if rec found

 MOVE '12' TO mstid * reset type to 12

 WRITE outmst FROM mstdd. * write record

 GOTO start. *loop until done
MOVEN
PURPOSE:
To modify or build data in an input record, WORKAREA, or member name field, with

automatic numeric conversion for the field types.

DESCRIPTION:
(tag)
MOVEN
| field

 |
(TO)
| field

 | (.)

|MEMNAME OF ddname|

|MEMNAME OF ddname|

SPECIAL NOTES:

 This verb is the same as CVTBIN, CVTDEC, or CVTCHAR in function. The difference is, MOVEN uses the receiving field type definition to determine the resulting format. The CVTBIN, CVTDEC, and CVTCHAR will force the receiving field to be in the format for the verb. For example, CVTBIN will force a binary result in the receiving field regardless of the field's definition.
MOVEN transfers data one byte at a time to the designated location. Maximum length of fields is 32760 bytes. The sending and receiving fields may overlap. The command is designed to bypass processing if the file record designated is not available.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

"MEMNAME"
READPDS's member name storage 8 byte field.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* convert fields into various formats

lit54 DEFINES P'+54' *packed value

amount DEFINES (F=in,P=1,L=12,T=C) *amount field

time DEFINES (F=in,P=45,L=4,T=X) *time

rdw DEFINES (F=WORKAREA,P=1,L=2,T=X)

amt DEFINES (F=WORKAREA,P=5,L=8,T=P)

tim DEFINES (F=WORKAREA,P=15,L=3,T=P)

start READ in. *read rec

 MOVEN lit54 TO rdw. *load vb length

 MOVEN amount TO amt. *amt convert

 MOVEN time TO tim. *time convert

 WRITE out FROM WORKAREA. *output rec

 GOTO EOJ. *shut down

MOVEX
PURPOSE:
To modify or build data in an input record, WORKAREA, or member name field, but

limit move area to length of record area.

DESCRIPTION:
(tag)
MOVEX
| field

 |
(TO)
| field

 | (.)

|MEMNAME OF ddname|

|MEMNAME OF ddname|

SPECIAL NOTES:
MOVEX transfers data one byte at a time to the designated location. Maximum length of fields is 32760 bytes. The sending and receiving fields may overlap. The command is designed to bypass processing if the file record designated is not available.

The difference between MOVEX and MOVE is that MOVEX stops its process if the end of the record has been detected. MOVE on the other hand does not restrict the end of the record, but is driven by the requested length size.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

"MEMNAME"
READPDS's member name storage 8 byte field.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* read a vb file and output records *

inrec DEFINES (F=mstdd,P=1,L=100) *vb rec area

outrec DEFINES (F=WORKAREA,P=1,L=100) *wk area

start READ mstdd. *read next mst

 MOVE ' ' TO recarea. *if rec found

 MOVEX inrec TO recarea. *

 WRITE outmst FROM WORKAREA. * write record

 GOTO start. *loop until done
MULTIPLE
PURPOSE:

To mathmatically multiply one number by another.

DESCRIPTION:

(tag) MULTIPLY field (BY) field (.)

SPECIAL NOTES:
MULTIPLY will multiply the value in the first operand by the value of the second operand. Field type is checked and automatically converted to the receiving field's numeric type. The first operand field size must be large enough to accomodate the resulting value.

Numeric types are character display, packed decimal, and binary. Character types have maximum size of 31 bytes, Packed fields have limits of 31 digits (16 bytes), and binary fields have limits of 4 bytes binary. Max binary numeric value is 134,217,727 or hex '07FFFFFF'.

"tag"

a name up to 8 characters for GOTO branching and is optional..

"field"

is either a label reference to a DEFINES statement, a data value constant, or the

explicit usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set and is optional.
SAMPLE: column 1 up to col 71

* read and calc billed amounts *

billed DEFINES (F=mstdd,P=1,L=10,T=P) *amt field

start
READ mstdd. *read next mst

MULTIPLY billed by '12'. *compute annual amt

EXHIBIT billed. *display amount

GOTO start. *loop until done

OBTAIN
PURPOSE:

To read an IDMS database record.
ENVIRONMENT:
IDMS only
DESCRIPTION:
Format 1.
(tag) OBTAIN (KEEP) (EXCLUSIVE) (FIRST)
field (WITHIN) (AREA) field (.)

 (LAST)

 (PRIOR)

 (NEXT)
Format 2.
(tag) OBTAIN (KEEP) (EXCLUSIVE) (CURRENT) WITHIN (AREA) field (.)

 (FIRST)

 (LAST)

 (NEXT)

 (PRIOR)

 (OWNER)

 (DBKEY)

 (DUPLICATE)
Other formats:
(tag) OBTAIN (KEEP) (EXCLUSIVE) field DB-KEY IS field (.)

(tag) OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field CURRENT USING field (.)

(tag) OBTAIN (KEEP) (EXCLUSIVE) field field WITHIN (AREA) field (.)

(tag) OBTAIN (KEEP) (EXCLUSIVE) CALC (ANY) field (.)

SPECIAL NOTES:
OBTAIN is the verb to access IDMS database records. The method used by Eagle88 is through native DML calls similar to the normal COBOL language syntax. Statement is as close as possible to IDMS's DML syntax. The exceptions are in the use of the "AREA" keyword to help Eagle88 determine record vs. area access. Another example is the use of IDMS "IF" and "RETURN" which conflicts with Eagle88's "IF" and "RETURN". In these situations, we have changed the syntax to be IDMS-IF and IDMS- RETURN. A list of all possible Eagle88 IDMS OBTAIN commands follow the sample.

Field refers to a record name, db-key value, or record number. Syntax of the call to IDMS required the field to be exactly 16 byte name sizes. Any less, you will not get your record. We are aware of this limita​tion but to maintain the maximum flexibility and compatibility with a third party vendor, the situtation ex​ists. Mechanically, Eagle88 builds a call list to IDMS, exactly the way the IDMS pre-compiler does. We substitue our Eagle88 variables in place of the "field" values passed to IDMS.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

 * idms area sweep to dump out records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
 PROCESS:

The DEFAREA creates a buffer area to receive the database record.

Connect to IDMS by binding the run-unit to the database and DML subschema.

LRF subschemas are not supported.

Indicate where the record is to be stored.

READY the area in read mode or update mode.

Print and dump all records.

When the status is not zeros, disconnect from IDMS with the FINISH verb and terminate the

 task by using GOTO EOJ.
The following is a complete list of IDMS OBTAIN and FIND verbs supported. The KEEP and EXCLUSIVE keywords are optional as is the "tag" and "." period to delimit IF statements. For FIND verbs, use the keyword FIND instead of OBTAIN.

 (tag) OBTAIN (KEEP) (EXCLUSIVE) FIRST field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) LAST field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) NEXT field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) PRIOR field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) FIRST field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) LAST field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) NEXT field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) PRIOR field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field DB-KEY IS field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field CURRENT USING field

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field WITHIN field USING field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field field WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) field field WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CALC ANY field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CALC field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CURRENT WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) FIRST WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) LAST WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) NEXT WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) PRIOR WITHIN AREA field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) DB-KEY field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) DUPLICATE field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CURRENT WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) FIRST WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) LAST WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) NEXT WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) PRIOR WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) OWNER WITHIN field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CURRENT field (.)

 (tag) OBTAIN (KEEP) (EXCLUSIVE) CURRENT (.)
PACK
PURPOSE:
To move a character display numeric field to a packed decimal format field.
DESCRIPTION:

(tag) PACK field (TO) field (.)

SPECIAL NOTES:
PACK converts a numeric field to the packed format. CVTDEC verb will also accomplishes the same request.

Operation maximum is 31 digits or 16 byte packed field. Receiving field's TYPE definition is automatically set to Packed for this operation.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1up to col 71

* pack amount field *

amt DEFINES C'123456789'

amtp DEFINES (F=in,P=1,L=5)

start READ in. *read next mst

 PACK amt TO amtp. *pack amt

 WRITE out FROM in. *output rec

 GOTO start. *loop until done

PERFORM
PURPOSE:

To call a subroutine defined within the Eagle88 command verbs.
DESCRIPTION:

(tag) PERFORM |tag| (.)

SPECIAL NOTES:
PERFORM will branch to another command statement as requested and save the return address in a 100 entry address stack.

Stack entries are added in first-in-first out order. The RETURN verb will use this stack to branch control back to the next command following the PERFORM. Performs, therefore, can be nested 100 levels. If you get the message that you exceeded your stack limit, there is most likely an error in your logic. You are probably performing a routine and issuing a GOTO out of it instead of a RETURN.

"tag"

a name up to 8 characters for GOTO branching.

" . "

will delimit an IF statement set.

SAMPLE: col 1 up to col 71

* read, select, convert fld, write *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

amt DEFINES (F=mstdd,L=3,P=5,T=P) *rec amt fld

amtnew DEFINES (F=mstdd,L=5,P=14) *total amount

start READ mstdd. *read next mst

 IF mstid EQUAL '18' *if rec type found

 PERFORM outrec. * select rec

 IF mstid EQUAL '25' *if rec type found

 PERFORM outrec. * select rec

 IF mstid EQUAL '53' *if rec type found

 PERFORM outrec. * select rec

 GOTO start. *loop for more

outrec PRINT mstdd. *print it

 CVTCHAR amt TO amtnew. *convert field

 WRITE mstout FROM msgdd. *write record

 RETURN. *exit
PRINT
PURPOSE:

To character print records in 100 byte print lines.
DESCRIPTION:

(tag) PRINT ddname-in (.)

SPECIAL NOTES:

The PRINT command initiates report R02 for output displays. Data set name, volume serial number, create date, and other report title information are automatically printed.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to printed.

" . "

will delimit an IF statement set.

SAMPLE: col 1up to col 71

* id, number, defined *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

mstnum DEFINES (F=mstdd,L=5,P=5) *rec number loc

* print all but 12345 *

start READ mstdd. *read next mst

 IF mstnum EQUAL '12345' *if rec

 DELETE mstdd. * skip it

 PRINT mstdd. *print record

 GOTO start. *loop until done

READ
PURPOSE:

To read a logical record.
DESCRIPTION:

(tag) READ ddname-in (.)

SPECIAL NOTES:

The input file ddname specified will receive all needed attributes from the system catalog or JCL.

Up to 99 files may be processed in a single job. Input files may be QSAM, VSAM, or ISAM; either variable or fixed record formats. Process will automatically terminate when all input files have reached EOF.

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), all process request verbs are designed to recognize this condition and skip that process. This allows a convenient and simplified language set.

"tag"

is a name up to 8 characters for GOTO branching.

"ddname"
is the input file name assigned in the execute JCL.

"."

is a period that ends an IF statement group.

SAMPLE: col 1up to col 71

* read and copy three files *

start READ mstdd. *read next mst

 READ txndd. *read trans

 READ mtdtxn. *read mtd txns

 WRITE outmst FROM mstdd. *copy mst

 WRITE outtxn FROM txndd. *copy txn file

 WRITE outmtd FROM mtdtxn. *copy mtd file

 GOTO start. *loop
READLIB
PURPOSE:

To request a logical record read from a Librarian file.
DESCRIPTION:

(tag) READLIB ddname-in (FOR)
member-name (CODE=xxxx) (.)

******** *=any char substituted

SPECIAL NOTES:
Librarian file processing is performed as read only.

Up to 99 files may be processed in a single job. Input files must be Librarian files (80 and 132 byte for​mats). Process will automatically terminate when all input files have reached EOF on all members re​quested.

Member names may be tested, stored, or altered by using the special access "MEMNAME OF ddname- in". MEMNAME is 8 characters.

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), all process request verbs are designed to recognize this condition and skip that process. This allows a convenient and simplified language set.

"tag"

is a name up to 8 characters for GOTO branching.

"ddname"
is the input file name assigned in the execute JCL.

"member"
is the specific member name or member group.

"CODE='
is the 4 byte Librarian management code for secured members.

"."

is a period that ends a conditional set of statements.
SAMPLE: col 1up to col 71

**

* scan mastin for values *

**

start READLIB mastin FOR pac***** CODE=1208

 SCAN mastin FOR 'prn'.

 SCAN mastin FOR 'pro'.

 GOTO start.
READPAN
PURPOSE:
To request a logical record read from a PANVALET file.
DESCRIPTION:

(tag) READPAN ddname-in (FOR) member-name (.)

 ********** *=any char substituted

SPECIAL NOTES:
Panvalet processing is performed without enqueing the library which avoids locking out other users.

Up to 99 files may be processed in a single job. Input files must be a Panvalet Library (80 byte only). Process will automatically terminate when all input files have reached EOF on all members requested.

Member names may be tested, stored, or altered by using the special access "MEMNAME OF ddname- in". MEMNAME is 10 characters.

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), all process request verbs are designed to recognize this condition and skip that process. This allows a convenient and simplified language set.

"tag"

is a name up to 8 characters for GOTO branching.

"ddname"
is the input file name assigned in the execute JCL.

"member"
is the specific member name or member group.

"."

is a period that ends a conditional set of statements.
SAMPLE: col 1up to col 71

* scan panlib for PAC modules *

start READPAN panlib FOR pac******* *get pac

 SCAN panlib FOR 'prn'. *look for PRN

 SCAN panlib FOR 'pro'. *look for pro

 GOTO start. * loop
READPDS
PURPOSE:

To request a logical record read from a PDS file.
DESCRIPTION:

(tag) READPDS ddname-in (FOR)
member-name (.)

******** *=any char substituted

SPECIAL NOTES:
The input file ddname specified will receive all needed attributes from the system catalog or JCL.

Up to 99 files may be processed in a single job. Input files must be Partitioned files (fixed or variable formats). Process will automatically terminate when all input files have reached EOF on all members requested.

It is recommended that input and output files not use the same dataset. This will alter the original input.

Member names may be tested, stored, or altered by using the special access "MEMNAME OF ddname- in". MEMNAME is 8 characters.

"tag"

is a name up to 8 characters for GOTO branching.

"ddname"
is the input file name assigned in the execute JCL.

"member"
is the specific member name or member group.

"."

is a period that ends a conditional set of statements.
SAMPLE: col 1.......up to col 71

**

* copy all "PAC" members except PAC900 *

**

start READPDS procin FOR pac***** *get pac

 IF MEMNAME OF procin = 'pac900 ' *if PAC900

 DELETE procin. * yes-skip

 WRITEPDS procout FROM procin. * write

 GOTO start. * loop
READY
PURPOSE:

To define resources required by the IDMS task.
ENVIRONMENT:
IDMS data base manager only.

DESCRIPTION:
Format 1.

(tag)
READY (field) USAGE-MODE IS
(EXCLUSIVE)
(RETRIEVAL) (.)

(PROTECTED)
(UPDATE)

Format 2.

(tag)
READY
(field)
(.)

SPECIAL NOTES:
READY is the verb to declare IDMS database records. The method used by Eagle88 is through native DML calls similar to the normal COBOL language syntax. Statement is as close as possible to IDMS's DML syntax. The exceptions are in the use of the "AREA" keyword to help Eagle88 determine record vs area access. Another example is the

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

 * idms area sweep to dump out records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS RETRIEVAL. *read only mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
RESTART
PURPOSE:

To reset a file to its beginning record.

DESCRIPTION:

(tag) RESTART ddname-in (.)

SPECIAL NOTES:
RESTART will close and then re-open the file setting record counts to zero. This verb is useful for process​ing a given file multiple times based on a control file.

For PDS, Librarian, and Panvalet files the member list will restart to the first member and first record.

"tag"

a name up to 8 characters for GOTO branching.

"ddname-in"

is the input ddname to be closed & re-opened

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* unpack amount field *

pgmctl DEFINES (F=ctl,P=1,L=8)

pgm DEFINES (F=in,P=LOC,L=8)

loop1 READ ctl.

loop2 READ in. *read next

 IF RECORDSW OF in = 'Y' *IF EOF

 RESTART in * restart file

 GOTO loop1. * next ctl

 SCANTEST in FOR 'xxxxxxxx'. *scan replace

 IF SCANHIT OF in = 'Y' * pgm

 MOVE pgmctl TO PGM. *

 WRITE out FROM in. *output rec

 GOTO loop2. *loop until done
RETURN
PURPOSE:
To exit a performed subroutine defined within the Eagle88 command verbs.
DESCRIPTION:

(tag) RETURN (.)

SPECIAL NOTES:
RETURN loads and branches to the return address stored in the 100 entry address stack. The address stack is built by the PERFORM verb.

Stack entries are added in first-in-first out order. The RETURN verb will use this stack to branch control back to the next command following the PERFORM. Performs, therefore, can be nested 100 levels.

There isn`t a POP verb to manipulate the stack, so please use a straight forward programming techniques of returning from called routines instead of branching out of them.

" . "

will delimit an IF statement set.
SAMPLE:

* read, select records *

mstid DEFINES (F=mstdd,L=2,P=1) *rec type loc

amt DEFINES (F=mstdd,L=3,P=5,T=P) *rec amt fld

amtnew DEFINES (F=mstdd,L=5,P=14) *total amount

start READ mstdd. *read next mst

 IF mstid EQUAL '18' *if rec type found

 PERFORM outrec. * select rec

 IF mstid EQUAL '25' *if rec type found

 PERFORM outrec. * select rec

 IF mstid EQUAL '53' *if rec type found

 PERFORM outrec. * select rec

 GOTO start. *loop for more

outrec PRINT mstdd. *print it

 CVTCHAR amt TO amtnew. *convert field

 WRITE mstout FROM msgdd. *write record

 RETURN. *exit
ROLLBACK
PURPOSE:

To un-do database record updates done up until the last commit point.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
ROLLBACK (CONTINUE) (.)

"tag"

a name up to 8 characters for GOTO branching.

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms area sweep to delete records *

 umtcxfr DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=umtcxfr,P=1,L=220) *full work size

 acct DEFINES (F=umtcxfr,P=7,L=5) *account id

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'umtcxfr ' *record name - 16 bytes

 ar1name DEFINES 'pend-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *area sweep 1st rec

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 IF acct = 'AU123' *if account found

 PRINT umtcxfr * yes-print record

 ERASE rc1name * -delete the record

 IF IDMS-STATUS NOT = '0000' * -test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback update

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *read next record

 GOTO loop. *loop for more

 done FINISH. *terminate DBMS

 EXHIBIT '---total records---'. *display counts

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO EOJ. *shutdown
SCAN
PURPOSE:
To search for a designated value on a record and print the record on EAGLER02 report

file.
DESCRIPTION:

(tag) SCAN ddname-in FOR field (.)

SPECIAL NOTES:
SCAN command will search the input record for a value either char, hex, or packed. When a record is found with the scan value, the record will print on R02 "print" report.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to scan.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* literal storage *

mstname DEFINES C'XYZ' *name

* read and scan records *

start READ mstdd. *read next mst

 SCAN mstdd FOR mstname. *scan for name

 SCAN mstdd FOR C'ABCDE'. *scan for value

 SCAN mstdd FOR X'0004F3'. *scan for value

 SCAN mstdd FOR P'+12345'. *scan for value

 GOTO start. *loop until done
SCANSTEP
PURPOSE:
To search for a designated value on a record and set a location pointer.
DESCRIPTION:

(tag) SCANSTEP ddname-in FOR field (.)

SPECIAL NOTES:

This command will search the input record for a value either char, hex, or packed. When a record is found with the scan value, an indicator (SCANHIT) and a location pointer will be set. The location pointer may be referenced using the explicit format (see DEFINES).

The difference between SCANSTEP AND SCANTEST is that the SCANTEST always begins its search from record position 1. SCANSTEP begins its search at the current location pointer to allow the users to "step" through a given record.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to scan.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE:
//STEP1 EXEC EAGLE

//FILEIN DD *

12 34 12 43 12 12 12 12 12 12

12 34 12 43 12 12 12 12 12 12 12

//SYSIN DD *

* scanstep *

fld01 DEFINES (F=filein,P=LOC,L=2)

loop READ filein. *

 SCANSTEP filein FOR '43'. *skip to middle

lop2 SCANSTEP filein FOR '12' *

 IF SCANHIT OF filein = 'Y' *search and

 MOVE '88' TO fld01 *replace

 PRINT filein *

 GOTO lop2. *loop

 GOTO loop. *
SCANTEST
PURPOSE:
To search for a designated value on a record and set a location pointer.
DESCRIPTION:

(tag) SCANTEST ddname-in FOR field (.)

SPECIAL NOTES:
This command will search the input record for a value either char, hex, or packed. When a record is found with the scan value, an indicator (SCANHIT) and a location pointer will be set. The location pointer may be referenced using the explicit format (see DEFINES).

Modification is also allowed to the LOC field by adding, subtracting or moving. Please note, the LOC of ddname field is a binary 4 bytes. MOVES must be done in hex X'00000001' or use the CVTBIN verb such as CVTBIN '1' TO LOC of filein to set a constant.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to scan.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE:

* literal storage *

mstname DEFINES C'XYZ' *name

newname DEFINES C'ABC' *new name

movenam DEFINES (F=mstdd,L=3,P=LOC) *replace loc

start READ mstdd. *read next mst

 SCANTEST mstdd FOR mstname. *scan for name

 IF SCANHIT OF mstdd = 'Y' *scan for value

 PRINT mstdd *print before

 MOVE newname TO movenam *replace one loc

 PRINT mstdd. *print after

 WRITE mstout FROM mstdd. *copy file

 GOTO start. *loop
SPELL
PURPOSE:

To verify the correct spelling of words.
DESCRIPTION:

(tag) SPELL ddname-in (.)

SPECIAL NOTES:
SPELL separates the given file record into words ignoring special characters and numeric values. A dic​tionary look up of each word is then done. Words not found in the dictionary are displayed on report R01.

Eagle88's dictionary has an effective range of 50,000 words with all of its prefix, suffix and root word combinations. Maximum word size is 30 characters. An optional user dictionary is allowed by specifying the ddname EAGLEWRD. The user dictionary must be one word per record with a DCB of LRECL=34, RECFM=VB,BLKSIZE=any.

Spelling check facilities by their nature have limitation that the user must be aware. Eagle88 relies on the following assumptions:

1. Sentence structure and punctuation is not verified.

2. Word usage is not validated.

3. Words are hashed numerically to find a matching entry

4. If the word given fails, a prefix is attempted to be stripped and rechecked. If the prefix look up fails,

up to three suffixes are stripped to find an entry.

Acceptance of misspelled words are possible with the above assumptions.

"tag"

a name up to 8 characters for GOTO branching.

"ddname-in"
is the input ddname to be checked.

" . "

will delimit an IF statement set.

SAMPLE:

* check spelling of pgm documentation

loop READ in. *read next

 SPELL in. *check spelling

 GOTO loop. *loop until done
STORE
PURPOSE:

Add records to the database.
ENVIRONMENT:
IDMS data base manager only.
DESCRIPTION:

(tag)
STORE
field
(.)

SPECIAL NOTES:
Database records inserted but not committed until a FINISH or COMMIT is issued.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
 SAMPLE: col 1 up to col 71

 * idms insert transactions under a given tran type *

 txntype DEFAREA SIZE=100 *memory workarea

 txndtl DEFAREA SIZE=220 *memory workarea

 rec1work DEFINES (F=txntype,P=1,L=100) *full work size

 txnid DEFINES (F=txntype,P=1,L=5) *tran id

 extract DEFINES (F=filein,P=1,L=100) *flat file extracts

 rec2work DEFINES (F=txndtl,P=1,L=100) *full work size

 amount DEFINES (F=txndtl,P=57,L=6,T=P) *amount field

 db1name DEFINES 'dev5dict ' *db names must be 16 bytes

 ss1name DEFINES 'intssc01 ' *schema name must be 16 bytes

 rc1name DEFINES 'txntype ' *parent name - 16 bytes

 rc2name DEFINES 'txndtl ' *detail name - 16 bytes

 path1 DEFINES 'txntype-txndtl ' *path name - 16 bytes

 ar1name DEFINES 'txn-area ' *area name - 16 bytes

 start BIND RUN-UNIT FOR ss1name DBNAME db1name. *bind run unit

 BIND rc1name TO rc1work. *declare rec to storage

 BIND rc2name TO rc2work. *declare rec to storage

 READY ar1name USAGE-MODE IS UPDATE. *update mode

 MOVE 'C4123' TO txnid. *pre set tran id

 OBTAIN CALC rc1name. *read direct key on txnid

 loop IF IDMS-STATUS NOT = '0000' *if read failed

 EXHIBIT IDMS-STATUS * yes-display

 GOTO done. * -exit

 READ filein. *read flat file of extracts

 MOVE extract TO rc2work. *load data to work

 STORE rc2name. *insert database record

 PRINT trandtl. *print image

 IF IDMS-STATUS NOT = '0000' *test if ok

 EXHIBIT IDMS-STATUS * -display error

 ROLLBACK * -rollback updates

 GOTO epilogue. * -exit

 ADD '1' TO COUNTIN OF umtcxfr. *manually up counts

GOTO loop. *loop for more

 EPILOGUE FINISH. *terminate DBMS

GOTO EOJ. *shutdown
STRING
PURPOSE:
To combine several fields into a single field separated by a delimiter.
DESCRIPTION:

(tag) STRING field,field INTO field

DELIMITED BY field (-) (.)

SPECIAL NOTES:
The STRING verb is used to group fields into a single field. The delimiter is used to locate the end of each individual field. It does not transfer the delimiter to the receiving field just like COBOL's method. Usually a comma or space is used as the delimiter, but any sized delimiter is accepted.

Should a receiving field be to small to receive the string, truncation will result.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* string a character field *

flda DEFINES C'this, ' *

fldb DEFINES C'will, ' *

fldc DEFINES C'combine, ' *

fldr DEFINES (F=in,P=1,L=30) *receiving fld

result DEFINES C'thiswillcombine' *the end result

start READ in. *read text rec

 STRING flda - *string fields

 fldb - *

 fldc INTO fldr - *

 DELIMITED BY ','. *

 WRITE out FROM in. *output prec

 GOTO start. *get more

SAMPLE: col 1 up to col 71

The STRING verb does not remove spaces between the field, so we added a SCANTEST process in a loop to shift out the spaces. Note the print examples to see original test record, after Unstring, after String, after trim. The size of the receiving fields decides how wide the field gets on the unstring.
 +....1....+....2....+....3....+....4....+....5....+....6

 orig: AAA,B,CCCCC,DDDD,EEEE,FFF,,HHHH,III

 Unstring AAA B CCCCCDDDD EEEE FFF HHHH III

 String AAA ,B ,CCCCC,DDDD ,EEEE ,FFF , ,HHHH ,III

 Trimmed AAA,B,CCCCC,DDDD,EEEE,FFF,,HHHH,III

//SYSTECHT JOB (123),'SYSTECH',CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),

// NOTIFY=SYSTECH

//PLIB JCLLIB ORDER=(SYSTECH.V7EAG.PROCLIB)

//STEP001 EXEC EAGLE88

//VAR DD *
AAA,B,CCCCC,DDDD,EEEE,FFF,,HHHH,III

//SYSIN DD *

WORK1 DEFAREA SIZE=100

WORK2 DEFAREA SIZE=100

REC DEFINES (F=VAR,P=1,L=80)

REC2 DEFINES (F=WORK2,P=1,L=100)

RECW DEFINES (F=WORK1,P=1,L=100)

FLDA DEFINES (F=WORK1,P=1,L=5)

FLDB DEFINES (F=WORK1,P=6,L=5)

FLDC DEFINES (F=WORK1,P=11,L=5)

FLDC DEFINES (F=WORK1,P=11,L=5)

FLDD DEFINES (F=WORK1,P=16,L=5)

FLDE DEFINES (F=WORK1,P=21,L=5)

FLDF DEFINES (F=WORK1,P=26,L=5)

FLDG DEFINES (F=WORK1,P=31,L=5)

FLDH DEFINES (F=WORK1,P=36,L=5)

FLDI DEFINES (F=WORK1,P=41,L=5)

 MOVE ' ' TO RECW.

 MOVE ' ' TO REC2.

 MOVE ' ' TO FLDG

LOOP READ VAR

 PRINT VAR

 UNSTRING REC DELIMITED BY ',' -

 INTO FLDA FLDB FLDC FLDD FLDE FLDF FLDG FLDH FLDI .

 PRINT WORK1.

 STRING FLDA FLDB FLDC FLDD FLDE FLDF FLDG FLDH FLDI

 INTO REC2 DELIMITED BY ',' .

 PRINT WORK2.

** TRIM SPACES FROM RIGHT SIDE OF FLDS **

TRIM SCANTEST WORK2 FOR ' ,'. *SEARCH FOR SPACE COMMA

 IF SCANHIT OF WORK2 = 'Y' *DID I FIND ONE?

 EDIT ',' TO (F=WORK2,P=LOC,L=2) *REPACES ' ,' ','

 GOTO TRIM. *CONT SEARCH UNTIL DONE

 PRINT WORK2.

 GOTO LOOP.

SUBTRACT
PURPOSE:

To subtract values from a field.
DESCRIPTION:

(tag) SUBTRACT field (FROM) field (.)

SPECIAL NOTES:
SUBTRACT reduces the value of the second operand by the value in the first operand. Field type is checked and automatically converted to the second operand's numerical type. Numeric types are Char​acter display, Packed decimal, and binary. Character types have maximum size of 31 bytes, Packed fields have limits of 31 digits, and binary fields have limits of 4 bytes binary.

Numeric validity checking is done prior to function. An error message appears on R01 for invalid numeric data found, but processing will continue.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* read and subtract billed amounts *

billed DEFINES (F=in,P=1,L=6,T=P) *

ytd DEFINES (F=in,P=10,L=4,T=X) *

start READ in. *read next

 SUBTRACT billed FROM ytd. *reduce billed

 EXHIBIT ytd. *display ytd

 GOTO start. *loop until done
SYNC
PURPOSE:
To provide a special read process that matches keys on two or more files.
DESCRIPTION:

(tag) SYNC field1 field99 (-) (.)

SPECIAL NOTES:
Up to 99 files may be processed in a single job. Input files may be QSAM, VSAM, or ISAM either variable or fixed record formats. Process will automatically terminate when all input files have reached EOF.

Each iteration of this command examines the next unused record on each file. It then makes available the record with the lowest key and any other record whose key matches the selected low key. The result is a matched group of records.

SYNC requires that all input files be pre-sorted by ascending key. Records will be read and marked as "present" (RECORDSW = "P") to allow process verbs to execute for those records with equal keys. Explic​it format must be used to define keys and files used.

Keys must be of like data formats. No conversion is done. Lessons 4 & 5 discuss this process in detail.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" - "

allows continuation for the 99 possible files.

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* define files and key to sync *

mstnum DEFINES (F=mstdd,L=4,P=2) *file key loc

txnnum DEFINES (F=txndd,L=4,P=9) *trans file key

mtdnum DEFINES (F=mtddd,L=4,P=2) *mtd file key

* select test data from prod files *

* when num is found on mst, txn, *

* & mtd files *

start SYNC mstnum - *match all file

 txnnum - *

 mtdnum. *

 IF mstnum EQUAL txnnum *if statement will

 IF mstnum EQUAL mtdnum *prevent the write

 WRITE outmst FROM mstdd *stmt from executing

 WRITE outtxn FROM txndd *unless all files

 WRITE outmtd FROM mtddd. *have a match

 GOTO start. *sync next set

UNPACK
PURPOSE:
To move a packed decimal field into a character display format field.
DESCRIPTION:

(tag) UNPACK field (TO) field (.)

SPECIAL NOTES:
UNPACK converts a packed field into a character display field format. This verb differs from the CVTCHAR verb by leaving the sign byte as-is (i.e. hex '012345C' would convert to hex 'F0F1F2F3F4C5'). The CVTCHAR will set the last byt to F5.

Operation maximum is 31 digits or a 16 byte packed field.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.

SAMPLE: col 1up to col 71

* unpack amount field *

amt DEFINES P'+1234567'

amtc DEFINES (F=in,P=1,L=7)

start READ in. *read next mst

 UNPACK amt TO amtc. *pack amt

 WRITE out FROM in. *output rec

 GOTO start. *loop until done
UNSTRING
PURPOSE:
To separate a group of characters into several fields depending on a delimiter.
DESCRIPTION:

(tag) UNSTRING field DELIMITED BY field

INTO field,field (-) (.)
SPECIAL NOTES:
The UNSTRING verb is used to break up a string of characters and separate them into individual fields. Usually a comma or spaces is used as the delimiter, but any delimiter field is accepted.

Should a receiving field be to small to contain the separated string, truncation will result.

"tag"

a name up to 8 characters for GOTO branching.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* unstring a character field *

fldx DEFINES C'this, will, separate' *

flda DEFINES (F=in,P=1,L=8) *this

fldb DEFINES (F=in,P=10,L=8) *will

fldc DEFINES (F=in,P=20,L=8) *separate

start READ in. *

 UNSTRING fldx DELIMITED BY ',' - *divide

 INTO - * &

 flda - *separate

 fldb - *

 fldc.

 WRITE out FROM in. *output rec

 GOTO start. *loop for more
WRITE
PURPOSE:

To request a logical record write.
DESCRIPTION:

(tag) WRITE ddname-out (FROM) ddname-in (.)

SPECIAL NOTES:
Up to 99 files may be processed in a single job. Output files must be QSAM variable or fixed record formats. Size and format of the output record may be different from the input file's format. Formats are controlled by DCB information provided in the user's JCL.

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), the WRITE command is designed to recognize this condition and skip the request.

"tag"

a name up to 8 characters for GOTO branching.

"ddname-out"
is the output file to be written.

"ddname-in"
is the input file to use as a source.

" . "

Periods are COBOL like delimiters that end the IF.

SAMPLE: col 1up to col 71

* read and copy three files *

start READ mstdd. *read next mst

 READ txndd. *read trans

 READ mtdtxn. *read mtd txns

 WRITE outmst FROM mstdd. *copy mst

 WRITE outtxn FROM txndd. *copy txn

 WRITE outmtd FROM mtdtxn. *copy mtd

 GOTO start. *loop for more
WRITEPDS
PURPOSE:

To request a logical record write for a PDS member.
DESCRIPTION:

(tag) WRITEPDS ddname-out (FROM) ddname-in (.)

SPECIAL NOTES:
Up to 99 files may be processed in a single job. There is no limit to the number of members processed. FB or VB files may be written out. The member name stored in the output's directory is the same as the input file's current member name. When a member name change occurs between this WRITEPDS and the last WRITEPDS, a new output member is started.

To rename or build your own output member name, move the new value into MEMNAME of the ddname- in source. This move must be done after each read of the input file because its MEMNAME will reset automatically to its true name (see sample below).

When a file's record is unavailable (such as at EOF, deleted via the DELETE verb, or not present via the SYNC verb), the WRITE command is designed to recognize this condition and skip the request.

"tag"

a name up to 8 characters for GOTO branching.

"ddname-out"
is the output file to be written

"ddname-in"
is the input file to use as a source.

" . "

Periods are COBOL like delimiters that end the IF command's conditional requests.
SAMPLE: col 1 up to col 71

**

* write all "PAC" members but rename PAC900*

* to be PAC901 *

**

start READPDS procin FOR PAC***** *read pac

 IF MEMNAME OF procin = 'pac900 ' *if PAC900

 MOVE 'PAC901' TO MEMNAME OF procin * -rename it

 WRITEPDS procout FROM procin. * write rec

 GOTO start. *loop
XREF
PURPOSE:
To cross reference source code lines by data name within a PDS library.
DESCRIPTION:

(tag) XREF ddname-in (EXPAND) (.)

SPECIAL NOTES:
The XREF command initiates a report to cross reference source statements. With the combination of READPDS and XREF verbs an entire application can be cross referenced by data name. Useful for analy​sis questions and for debugging systems. A data name is defined as any name with at least one dash (-) or underscore (_).

The EXPAND keyword allows Assembler programs to be cross referenced by removing the restriction of the underscore/dash.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to scan.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1 up to col 71

* cross reference PAC system *

start READPDS libin FOR PAC***** *read all pgms

 XREF libin. *release record

 GOTO start. *loop until done
XREFDSN
PURPOSE:

To cross reference Dataset names in JCL.

DESCRIPTION:

(tag) XREFDSN ddname-in (.)

SPECIAL NOTES:
The XREFDSN command initiates a report to cross reference JCL dataset names. With the combination of READPDS and XREFDSN verbs entire libraries can be cross referenced by data set name. A data set name is recognized by the DSN= keyword.

"tag"

a name up to 8 characters for GOTO branching.

"ddname"
is the input file name of the record to scan.

"field"

is either a label reference to a DEFINES statement, a data value constant, or the explicit

usage of file, length, and position info (see DEFINES).

" . "

will delimit an IF statement set.
SAMPLE: col 1up to col 71

* cross reference PAC system *

start READPDS proc FOR PAC***** *read all pgms

 XREFDSN proc. *release record

 GOTO start. *loop until done
 Section D - APPLICATION SAMPLES
Most application samples shown in the section assume the standard EAGLE proc is used. ERRORS=ABEND will cause a U1001 abend should edit or process errors occur. The abend status will prevent your files from cataloging. ERRORS=TRACE will request Eagle88 to issue messages on R01 that trace each command as they are executed. The display contains internal hex values usable only to system support. For examples that use IMS or CA-DATACOM databases, see the EAGLEIMS and EAGLEDB procs that support those services.

STANDARD EAGLE JCL PROC FOR OS/DB2/IDMS FILES:
//EAGLE88 PROC ERRORS=,RGN=2048K

//*

//**

//* EXEC EAGLE8888 UTILITY *

//**

//*

//EAGLE88 EXEC PGM=EAGLE88,PARM=&ERRORS,REGION=&RGN

//STEPLIB DD DSN=company.loadlib,DISP=SHR

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,RECFM=VB,BLKSIZE=6000)

//EAGLECMD DD DDNAME=SYSIN

//* PEND
The IMS application samples shown in the section assume the standard EAGLEIMS proc is used. PSB=xxxxxxxx is the desired application PSB. Because IMS and CA-DATACOM both require to be called first, you may not combine access to IMS and Datacom in the same run. You may, however, under either of these environments access OS, DB2, or IDMS file structures. PARM=ABEND or TRACE is also not available in this proc.

STANDARD EAGLE JCL PROC FOR IMS:
//EAGLEIMS PROC RGN=4096K,PSB=

//**

//* EXEC EAGLE8888 UTILITY FOR IMS vv *

//**

//EAGLEIMS EXEC PGM=DFSRRC00,REGION=&RGN,

// PARM='DLI,EAGLE88,&PSB'

//STEPLIB DD DSN=company.loadlib,DISP=SHR

// DD DSN=company.ims.reslib,DISP=SHR

// DD DSN=company.ims.modlib,DISP=SHR

//IMS DD DSN=company.ims.pgmlib,DISP=SHR

//DFSVSAMP DD DSN=company.ctlcard(bufdef),DISP=SHR

//IEFRDER DD DUMMY

//SYSPRINT DD SYSOUT=*

//DFSSTAT DD DUMMY

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133.LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,BLKSIZE=6000,RECFM=VB)

//EAGLECMD DD DDNAME=SYSIN

//* PEND
The CA-DATACOM application samples shown in the section assume the standard EAGLEDB proc is used. URT=xxxxxxxx is the desired application PSB. Because IMS and CA-DATACOM both require to be called first, you may not combine access to IMS and Datacom in the same run. You may however under either of these environments access OS, DB2, or IDMS file structures. PARM=ABEND or TRACE is also not available in this proc.

STANDARD EAGLE JCL PROC FOR CA-DATACOM:

//EAGLEDB PROC RGN=4096K,URT='XXXXXXXX'

//**

//* EXEC EAGLE8888 UTILITY FOR CA-DATACOM *

//**

//EAGLEDB EXEC PGM=EAGLEDB,PARM='URT=&URT',REGION=&RGN

//STEPLIB DD DSN=company.loadlib,DISP=SHR

// DD DSN=company.urt.loadlib,DISP=SHR

// DD DSN=company.db.loadlib,DISP=SHR

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133.LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,BLKSIZE=6000,RECFM=VB)

//EAGLECMD DD DDNAME=SYSIN

//* PEND
Sample 1 COPY FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=REF=*.prodfile

//SYSIN DD *

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *copy

 WRITE testfile FROM prodfile. *records

 GOTO copyloop. *

/*

//

DESCRIPTION
Copy one file.

INPUTS

DDNAME Prodfile as input.

OUTPUTS

Testfile created in this job.

PROCESS STEPS
Read the production file.

Write the output file.

DCB information supplied by the JCL REF= method allows the

output to be copied without needing to know the input's DCB

definition

Sample 2 COPY AND REBLOCK FILES
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=214,BLKSIZE=4280,RECFM=FB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=214,BLKSIZE=2140,RECFM=FB)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *copy

 WRITE testfile FROM prodfile. *records

 GOTO copyloop. *

/*

//
DESCRIPTION
Copy and Reblock a file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Write the output file. (DCB information is defined in the JCL).

Sample 3 COPY AND CHANGE RECORD SIZE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=214,BLKSIZE=4280,RECFM=FB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=56,BLKSIZE=5600,RECFM=FB)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *copy

 WRITE testfile FROM prodfile. *records

 GOTO copyloop. *

/*

//
DESCRIPTION
Copy and Change the record size.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Record truncates from 214 bytes to 56 bytes using the write verb.

Write the output file. (DCB information is defined in the JCL).

** Also see Sample 33 for expanding records.

Sample 4 COPY MULTIPLE FILES
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//test01 DD DSN=test01.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=12960,RECFM=FB)

//test02 DD DSN=test02.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=12960,RECFM=FB)

//test03 DD DSN=test03.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=12960,RECFM=FB)

//test04 DD DSN=test04.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=12960,RECFM=FB)

//test05 DD DSN=test05.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=12960,RECFM=FB)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *read prod

 WRITE test01 FROM prodfile. *write test01

 WRITE test02 FROM prodfile. *write test02

 WRITE test03 FROM prodfile. *write test03

 WRITE test04 FROM prodfile. *write test04

 WRITE test05 FROM prodfile. *write test05

 GOTO copyloop. *loop
DESCRIPTION
Copy and create five new test files.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file 01 created in this job.

Test file 02 created in this job.

Test file 03 created in this job.

Test file 04 created in this job.

Test file 05 created in this job.

PROCESS STEPS
Read the production file.

Write the output file. (DCB information is defined in the JCL).
Sample 5 COPY AND CHANGE RECORD FORMAT VB TO FB

//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=14,BLKSIZE=6000,RECFM=VB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=10,BLKSIZE=1000,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rec+4 DEFINES (F=prodfile,P=5,L=10)

rechold DEFINES (F=WORKAREA,P=1,L=10)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *read prod

 MOVEX rec+4 TO rechold. *move rec offset 4

 WRITE testfile FROM WORKAREA. *write from work

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Copy and change the record format.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Move record from work.

Note: The MOVEX verb is used because most VB records will

not be the full LRECL size. MOVEX reduces the sending field

length automatically to the end of the logical record.

Write the output file. (DCB information is defined in the JCL).
Sample 6 COPY AND CHANGE RECORD FORMAT FB TO VB
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=10,BLKSIZE=1000,RECFM=FB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=6000,RECFM=VB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rechold DEFINES (F=WORKAREA,P=5,L=10)

rec DEFINES (F=prodfile,P=1,L=10)

rdwhold DEFINES (F=WORKAREA,P=1,L=4)

length DEFINES X'000E0000'

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *read prod

 MOVE rec TO rechold. *move rec offset 4

 MOVE length TO rdwhold. *set rdw length

 WRITE testfile FROM WORKAREA. *copy records

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Copy and change the record format from FB to VB.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Move to hold.

Write the output file. (DCB information is defined in the JCL).

Also see Sample 67.......
Sample 7 COPY ONLY SELECTED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rectype DEFINES (F=prodfile,P=1,L=2)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IF rectype EQUAL C'70' *if record type 70

 PERFORM putrec. * yes-do routine

 IF rectype EQUAL C'89' *if record type 89

 PERFORM putrec. * yes-do routine

 IF rectype EQUAL C'14' *if record type 14

 PERFORM putrec. * yes-do routine

 GOTO copyloop. *loop for more

putrec PRINT prodfile. *print record

 WRITE testfile FROM prodfile. *output it

 RETURN. *exit perform

/*

//
DESCRIPTION
Read and select only record types "70", "89", or "14" from the

Production file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for record type.

If correct type, perform write the output file.
Sample 8 COPY AND REMOVE SELECTED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rectype DEFINES (F=prodfile,P=1,L=2)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IF rectype EQUAL C'70' *if record type 70

 DELETE prodfile. * yes-mark record

 WRITE testfile FROM prodfile. *write out record

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Read and select all record except type "70" from the prodfile. You

could have simply issued a GOTO COPYLOOP to drop the record,

but the DELETE will set statistics for auditing purposes.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for record type.

Delete type "70" types.

Write the output file (DCB information is defined in the JCL).
Sample 9 COPY AND REMOVE SELECTED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rectype DEFINES (F=prodfile,P=1,L=2)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IF rectype EQUAL C'70' *if record type 70

 GOTO copyloop. * yes-skip record

 WRITE testfile FROM prodfile. *write out record

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Read and select all records except type "70" from the prodfile.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for record type to skip.

Write the output file (DCB information is defined in the JCL).

Sample 10 COPY AND MODIFY DATA IN RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

date DEFINES (F=prodfile,P=8,L=6)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 MOVE '830112' TO date. *Modify date on record

 WRITE testfile FROM prodfile. *write out record

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Read and modify all records to change date.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Modify date.

Write the output file (DCB information is defined in the JCL).
Sample 11 COPY AND MODIFY DATA IN SELECTED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

date DEFINES (F=prodfile,P=8,L=6)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IF (F=prodfile,P=1,L=2) = '70' *if record type found

 MOVE '830112' TO date. * yes-Modify date on record

 WRITE testfile FROM prodfile. *write out record

 GOTO copyloop. *loop for more

/*

//

DESCRIPTION
Read and modify only "70" record types.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Modify date if the correct type.

Write the output file (DCB information is defined in the JCL).

Sample 12 COPY WITH LIMIT COUNT
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

limit DEFINES C'120'

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IF COUNTIN OF prodfile > limit *if enough records read

 GOTO EOJ. * yes-end job

 WRITE testfile FROM prodfile. *write out record

 GOTO copyloop. *loop for more

/*

//

DESCRIPTION
Copy 120 records to the test file. The IF statement automatically

converts the numeric values for comparision. Countin is a 4 byte

packed field and Limit is defined as character display for 3 bytes in

this example.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for limit.

Write the output file (DCB information is defined in the JCL).
Sample 13 PRINT A FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

limit DEFINES C'120'

* EAGLE COMMANDS START HERE *

prtloop READ prodfile *read prod

 IF COUNTIN OF prodfile > limit *if enough records read

 GOTO EOJ. * yes-end job

 PRINT prodfile. *character print

 GOTO prtloop. *loop for more

/*

//
DESCRIPTION
Print 120 records to the test file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for limit.

Print the records on the EAGLER02 report.
Sample 14 RECORD VERTICAL DUMP
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

limit DEFINES C'120'

* EAGLE COMMANDS START HERE *

prtloop READ prodfile *read prod

 IF COUNTIN OF prodfile > limit *if enough records read

 GOTO EOJ. * yes-end job

 DUMP prodfile. *dump print the records

 GOTO prtloop. *loop for more

/*

//
DESCRIPTION
Dump 120 records to the test file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for limit.

Dump the records on the EAGLER03 report.
Sample 15 RECORD HORIZONTAL DUMP
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

limit DEFINES C'120'

* EAGLE COMMANDS START HERE *

prtloop READ prodfile *read prod

 IF COUNTIN OF prodfile > limit *if enough records read

 GOTO EOJ. * yes-end job

 DUMPH prodfile. *dump the records

 GOTO prtloop. *loop for more

/*

//

DESCRIPTION
Dump 120 records to the test file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for limit.

Dump the records on the EAGLER04 report.
Sample 16 SELECTIVELY PRINT, DUMP, AND COPY FILES
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rectype DEFINES (F=prodfile,P=1,L=2)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile. *read prod

 IF rectype EQUAL '70' *if type 70

 PRINT prodfile * yes-print it

 WRITE testfile FROM prodfile * yes-copy it

 GOTO copyloop. * yes-loop

 IF rectype EQUAL '50' *if type 50

 PRINT prodfile * yes-print it

 WRITE testfile FROM prodfile * yes-copy file

 GOTO copyloop. * yes-loop

 DUMP prodfile. *dump unknowns

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Select 70 and 50 type records. Dump unknowns.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for record types 70 and 50 for print and copy.

Dump unknown types.
Sample 17 COMPARE TEST FILES BEFORE AND AFTER
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//before DD DSN=testin.data,DISP=SHR

//after DD DSN=testout.data,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

readloop READ before. *read the before file

 READ after. *read the after file

 COMPARE before TO after. *compare files

 GOTO readloop. *loop for more

/*

//

DESCRIPTION
Compare entire files for records that have changed. This example

assumes the same record count and order. Refer to other examples

in this section for unequal record counts.

INPUTS

Test file before process

OUTPUTS

Test file after update process.

PROCESS STEPS
Read before and after files.

Compare records.

Dump the two records on EAGLER05 if different.

Sample 18 SYNC FILES TO GET MATCH TEST DATA
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//policy DD DSN=policy.data,DISP=SHR

//billing DD DSN=billing.data,DISP=SHR

//rates DD DSN=rates.data,DISP=SHR

//txns DD DSN=txns.data,DISP=SHR

//polsel DD DSN=testpol.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=2000,RECFM=VB,BLKSIZE=19076)

//billsel DD DSN=testbill.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=56,RECFM=FB,BLKSIZE=5600)

//ratesel DD DSN=testrate.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=114,RECFM=FB,BLKSIZE=1400)

//transel DD DSN=testtxns.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=12960)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

polin DEFINES (F=policy,P=1,L=10)

billin DEFINES (F=billing,P=1,L=10)

ratein DEFINES (F=rates,P=1,L=10)

txnin DEFINES (F=txns,P=3,L=10)

pol# DEFINES C'A005698300'

readloop SYNC polin - *sync policy

 billin - * billing file

 ratein - * rate

 txnin. * transactions

 IF polin NOT EQUAL pol# *if skip others

 GOTO readloop. * yes-get next group

 IF polin = billin *use if statements to

 IF billin = ratein *insure all records are

 IF ratein = txnin *available.

 WRITE polsel policy *copy to test

 WRITE ratesel rates *copy to test

 WRITE billsel billing *copy to test

 WRITE txnsel txns *copy to test

 GOTO EOJ. *process done

DESCRIPTION
Match all needed files to run a test on policy #A065098.

INPUTS

Test files policy, billing, rates, txns.

OUTPUTS

Selected mini file for the given policy number.

PROCESS STEPS
Read and sync all files. Records are made available for processing

in groups of matched keys.

"IF" statements will only process on records that are available. The

statements will insure we have made a good selection of all files.

Copy all needed files.
Sample 19 SYNC FILES FOR A MERGE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//testpol1 DD DSN=group1.data,DISP=SHR

//testpol2 DD DSN=group2.data,DISP=SHR

//polmerg DD DSN=mergpol.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=2000,RECFM=VB,BLKSIZE=19076)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

pol1 DEFINES (F=testpol1,P=1,L=10)

pol2 DEFINES (F=testpol2,P=1,L=10)

* EAGLE COMMANDS START HERE *

mergloop SYNC pol1 - *sync policy test 1

 pol2. * policy test 2

 WRITE polmerg FROM testpol1. *write out if available

 WRITE polmerg FROM testpol2. *write out if available

 GOTO mergloop. *loop for more

/*

//
DESCRIPTION
Merge all files and write to output.

INPUTS

Pre-sorted day1 and day2 policy files

OUTPUTS

Merged file of day1 and day2 combined.

PROCESS STEPS
Read and sync all files. Records are made available for processing

in groups of matched keys (some groups will only contain 1 file

record).

The write statements will only process on those files that have a

record available.

The result is a merged file.

Loop for more.
Sample 20 SYNC FILES TO MODIFY DATA
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodpol DD DSN=policy.data(0),DISP=SHR

//polfix DD DSN=patch.data,DISP=SHR

//newprod DD DSN=policy.data(+1),DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=2000,RECFM=VB,BLKSIZE=19076)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

poldate DEFINES (F=prodpol,P=23,L=6)

date DEFINES P'0831231'

prod DEFINES (F=prodpol,P=1,L=10)

fix DEFINES (F=polfix,P=1,L=10)

readloop SYNC prod, fix. *sync policy production

 MOVE date TO poldate. *if prod file available

 IF prod EQUAL fix *if the two files matched

 WRITE newprod FROM polfix *write out fixed record

 DELETE prodpol. *set prod rec as deleted

 WRITE newprod FROM prodpol. *write out if available

 GOTO readloop. *loop for more
DESCRIPTION
Sync the production and patched records. Patched records will

replace the production records. For unmatched production records,

the last processed date will be modified. This example assumes

both files are pre-sorted by the key and a one-to-one relationship

exists. For one-to-many key matching see Sample 88.

INPUTS

Production and the patched policy files.

OUTPUTS

New production file with data modified.

PROCESS STEPS
-Read and sync all files. Records are made available for processing

in groups of matched keys (some groups will only contain 1 file

record). The move statement will only process on those files

having a record available. If prod and fixed files are matching, the

new record will be written out.

-The production record will be marked as deleted.

-Write out non-matching prod records.

-Loop for more.
Sample 21 SYNC FILES TO REMOVE UNMATCHED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//policy DD DSN=policy.data(0),DISP=SHR

//ctlcard DD DSN=card.data,DISP=SHR

//testpol DD DSN=testpol.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=2000,RECFM=VB,BLKSIZE=19076)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

prod DEFINES (F=policy,P=1,L=10)

ctl DEFINES (F=ctlcard,P=1,L=10)

* EAGLE COMMANDS START HERE *

readloop SYNC prod - *sync policy production

 ctl. * control cards

 IF prod EQUAL ctl *if the two files matched

 WRITE testpol FROM policy. * yes-write it out

 GOTO readloop. *loop for more

/*

//
DESCRIPTION
Sync the production with control cards to drop all unmatched.

INPUTS

Production and the control cards.

OUTPUTS

New test file.

PROCESS STEPS
Read and sync all files. Records are made available for processing

in groups of matched keys (some groups will only contain 1 file

record).

The "IF" statement will only process on those files that have a

record available.

Loop for more.

Should file have multiple records with the same key, they will be

skipped. To avoid skipping add a move of the key to work and

duplicate the IF and WRITE stmts testing on the WORKAREA

hold key.
Sample 22 SYNC FILES TO PRINT MATCHED SETS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//policy DD DSN=policy.data,DISP=SHR

//billing DD DSN=billing.data,DISP=SHR

//rates DD DSN=rates.data,DISP=SHR

//txns DD DSN=txns.data,DISP=SHR

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

polin DEFINES (F=policy,P=1,L=10)

billin DEFINES (F=billing,P=1,L=10)

ratein DEFINES (F=rates,P=1,L=10)

txnin DEFINES (F=txns,P=3,L=10)

* EAGLE COMMANDS START HERE *

readloop SYNC polin - *sync policy

 billin - * billing file

 ratein - * rate

 txnin. * transactions

 PRINT policy. *Print policy

 PRINT billing. *Print billing record

 PRINT rates. *Print rate record

 PRINT txns. *Print transaction

 GOTO readloop. *loop for more

/*

//
DESCRIPTION
Print file records groups.

INPUTS

Test files policy, billing, rates, txns

OUTPUTS

Print all groups.

PROCESS STEPS
Read and sync all files. Records are made available for processing

in groups of matched keys.

Print the record group.
Sample 23 SYNC FILES TO COMPARE RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//policy DD DSN=policy.data,DISP=SHR

//testin DD DSN=tstfile.data,DISP=SHR

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

prodpol DEFINES (F=policy,P=1,L=10)

testpol DEFINES (F=testin,P=1,L=10)

* EAGLE COMMANDS START HERE *

readloop SYNC prodpol - *sync policy

 testpol. * test policy

 COMPARE policy TO testin. *compare the records.

 GOTO readloop. *loop for more

/*

//
DESCRIPTION
Compare all file records

INPUTS

Policy files Prod and test,

OUTPUTS

Compare report on differences.

PROCESS STEPS
Read and sync all files. Records are made available for processing

in groups of matched keys.

Compare records and indicate adds and deletes in the file.

Sample 24 GENERATE TEST DATA RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//janbill DD DSN=janbill.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),UNIT=SYSDA,

// DCB=(LRECL=56,RECFM=FB,BLKSIZE=5600)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

billrec DEFINES (F=WORKAREA,P=1,L=56)

rec-id DEFINES (F=WORKAREA,P=1,L=2)

pol-num DEFINES (F=WORKAREA,P=3,L=10)

date DEFINES (F=WORKAREA,P=13,L=6)

amount DEFINES (F=WORKAREA,P=19,L=4)

LOOP MOVE ' ' TO billrec. *space out the entire rec

 MOVE '43' TO rec-id. *set record id

 MOVE '12A0007563' TO pol-num. *set policy number

 MOVE '830115' TO date. *set date

 MOVE P'0017631' TO amount. *set amount

 WRITE janbill FROM WORKAREA. *create january bill card

 IF COUNTOUT OF janbill > '50' *if limit reached

 GOTO EOJ. * yes-stop run

 GOTO loop. *Loop until limit hit

/*

//

DESCRIPTION
Create a January billing card for testing.

INPUTS

Production billing file to get work area

OUTPUTS

Generated billing card.

PROCESS STEPS
Because no read has occurred the job will loop until manually shut

off with the count limit.

Blank out the work area (move will blank fill if moving a short data

element to a larger element).

Move in all data needed from constants.

Write out the record from the Workarea.
Sample 25 GENERATE CONTROL CARDS FROM A REPORT
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//report DD DSN=errors.data,DISP=SHR,

// DCB=(LRECL=133,RECFM=FB,BLKSIZE=1330)

//ctlcards DD DSN=select.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(5,1)),UNIT=SYSDA,

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=12960)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

program DEFINES (F=report,P=110,8)

select DEFINES C' SELECT MEMBER='

member DEFINES (F=report,P=21,L=8)

rest DEFINES (F=report,P=28,L=105)

* EAGLE COMMANDS START HERE *

readloop READ report. *read expiration

 MOVE select TO (F=report,P=1,L=20) *move control card verbs

 MOVE program TO member. *move in program name

 MOVE ' ' TO rest. *blank out to col 80

 WRITE ctlcard FROM report. *write out 80 bytes

 GOTO readloop. *loop for more

/*

//
DESCRIPTION
Create control cards from an expiration report.

INPUTS

Expiration report on disk.

OUTPUTS

Generated control cards for IEBCOPY utility

PROCESS STEPS
Read Expiration report line.

Build a control card using the program name from the report line.

Write out the built record.
Sample 26 SCAN A FILE FOR VALUES IN ANY POSITION
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//billdata DD DSN=billing.data,DISP=SHR

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

date DEFINES p'+831231'

acct# DEFINES C'12345789'

count DEFINES X'000001C3'

* EAGLE COMMANDS START HERE *

readloop READ billdata. *read file

 SCAN billdata FOR date. *search for process date

 SCAN billdata FOR acct#. *search for account num

 SCAN billdata FOR count. *search for binary letter

 SCAN billdata FOR C'ABCDEF' *search for values

 GOTO readloop. *loop for more

/*

//

DESCRIPTION
Read input file and scan for values.

INPUTS

Billing file on disk.

OUTPUTS

EAGLER01 report on only "hits" of scan.

PROCESS STEPS
Read Billing file.

Search for values requested.

Prints automatically on R01 report records found with the values.

Sample 27 SCAN/REPLACE DATA ON A FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=balance.control.file,DISP=SHR

//fileout DD DSN=fixed.balance.control.file,DISP=(,CATLG,DELETE),

// DCB=(RECFM=FB,LRECL=10000,BLKSIZE=10000),

// UNIT=SYSDA,SPACE=(BLK,(1))

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* THIS FILE HAS ONLY ONE RECORD BUT MULTIPLE*

* +43 AND +5 BALANCE CONTROL COUNTS TO CLEAR*

count DEFINES (F=filein,L=2,P=LOC) *CLEARING FIELD

count1 DEFINES (F=filein,L=1,P=2889) *CLEARING FIELD

count2 DEFINES (F=filein,L=2,P=3898) *CLEARING FIELD

 READ filein. *read old bal cntl file

 PRINT filein. *print before image

 MOVE X'0C' TO count1 *clear count

 MOVE X'000C' TO count2 *clear count

loop SCANTEST filein FOR X'043C' *find packed count

 IF SCANHIT OF filein = 'Y' *if scan found

 MOVE X'000C' TO count * yes=clear count

 GOTO loop. *loop for more fields

 SCANTEST filein FOR X'005C' *find packed count

 IF SCANHIT OF filein = 'Y' *if scan found

 MOVE X'000C' TO count * yes=clear count

 GOTO loop. *loop for more fields

 WRITE fileout FROM filein. *write rec out

 GOTO EOJ. *stop run

//
DESCRIPTION
Read input file and scan/replace values.

INPUTS

Balance Control File.

OUTPUTS

EAGLER02 report prints before & after images.

PROCESS STEPS
Read file.

Search for values and set location pointer.

Replace value using the MOVE verb and P=LOC which points to

the starting location of the scan value.
Sample 28 SCAN PROCLIB FOR A PROGRAM
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//procin DD DSN=prod.proclib,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS WHERE IS PGM USED? *

loop READPDS procin FOR ft****** . *read all "FT" jobs

 SCAN procin FOR 'FDS040' . *scan & print hits- member

 GOTO loop. *name appear on R02 report

/*

//
DESCRIPTION
Read pds file, each record in each "FT" member.

INPUTS

Prod proclib.

OUTPUTS

EAGLER02 report prints hits with member names.

PROCESS STEPS
Read file member records.

Search for values and print if found.
Sample 29 SCAN/REPLACE A TEST DATA LIBRARY
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=system.test.level4.test.cases,DISP=SHR

//fileout DD DSN=system.test.level4.updte.cases,DISP=(,CATLG,DELETE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6000),

// UNIT=SYSDA,SPACE=(TRK,(5,5,10),RLSE)

//SYSIN DD *

* EAGLE COMMANDS *

issue DEFINES 'AAF' *stock issue

oldprice DEFINES '4000' *old value

newprice DEFINES '0400' *new value

price DEFINES (F=FILEIN,L=4,P=LOC) *replace spot

loop READPDS filein FOR L4*JAN** . *read level4 jan cases

 SCANTEST filein FOR issue. *find issue

 IF SCANHIT OF filein = 'Y' *if found

 SCANTEST filein FOR oldprice *scan for price

 IF SCANHIT filein FOR 'Y' *if found

 PRINT filein *print before

 MOVE newprice to price *replace data

 PRINT filein. *print after

 WRITEPDS fileout FROM filein. *write out record

 GOTO loop. *get more
DESCRIPTION
System test cases need prices updated on issue AAF.

INPUTS

System test case library level4 cases.

OUTPUTS

New output case library.

PROCESS STEPS
Read file member reocrds.

Search for values and replace prices.

Note:

Output file name and input file may be the same, but disp=old should be used to avoid other users from updating at the same time. If someone does update while you are updating, a directory crash will occur. The best advice is to always create new or back up the input before process​ing.
Sample 30 CROSS REFERENCE AN APPLICATION
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//source DD DSN=system.source.pds,DISP=SHR

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SYSIN DD *

* EAGLE COMMANDS XREF EXCEPT 900XX *

loop READPDS source FOR ******** . *read all members

 IF MENNAME OF source = 'PAC900XX' *if test pgm

 DELETE source. * skip it

 XREF source. *release record to xref

 GOTO loop. *get more

/*

//
DESCRIPTION
System wide cross reference with the exclusion of a test program

PAC900XX.

INPUTS

Cobol or PL1 source statements Sortwk for work files

OUTPUTS

Report EAGLER07 XREF.

PROCESS STEPS
Read each source statement.

Skip records from the PAC900XX member.

Release to Xref facility to select names with a dash (-) or

underscore (_).

At end of job the report will automatically sort all data names and

report.
Sample 31 COVERT FIELDS FROM BINARY TO CHARACTER
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//infile DD DSN=system.master,DISP=SHR

//otfile DD DSN=test.master,DISP=(NEW,CATLG),

// DCB=(*.INFILE),

// UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)

//SYSIN DD *

* EAGLE COMMANDS *

flda DEFINES (F=infile,P=7,L=4,T=X) *binary field

fldb DEFINES (F=infile,P=15,L=8,T=P) *packed field

fldxa DEFINES (F=infile,P=76,L=15,T=C) *converted field

fldxb DEFINES (F=infile,P=90,L=15,T=C) *converted field

loop READ infile. *read file

 CVTCHAR flda TO fldxa. *reset fld to char

 CVTCHAR fldb TO fldxb. *reset fld to char

 WRITE otfile FROM infile. *output rec

 GOTO loop. *get more

/*

//

DESCRIPTION
The input file is read contains a binary and a packed field that is

converted to character format.

INPUTS

Production file

OUTPUTS

New file using original file's DCB attributes

PROCESS STEPS
Read each record.

Convert the binary into character.

Convert the packed field into character.

Write and loop for more.

Sample 32 READ AND REMOVE DUPLICATE RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//infile DD DSN=system.master,DISP=SHR

//otfile DD DSN=test.master,DISP=(NEW,CATLG),

// DCB=(LRECL=100,RECFM=FB,BLKSIZE=6000),

// UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)

//SYSIN DD *

* EAGLE COMMANDS REMOVE DUPLICATES *

recin DEFINES (F=infile,P=1,L=100) *record area

cm# DEFINES (F=infile,P=1,L=3) *record id

holdrec DEFINES (F=WORKAREA,P=1,L=100) *hold rec area

holdcm# DEFINES (F=WORKAREA,P=1,L=3) *hold cm#

loop READ infile. *read file

 IF holdcm# NOT = cm# *if hold not = current

 MOVE recin TO holdrec * -hold old rec

 WRITE otfile FROM infile. * -output 1st rec

 GOTO loop. *dup -skip it

/*

//
DESCRIPTION
The input file has some duplicate records and we wish to remove all

but the first record.

INPUTS

Production file

OUTPUTS

New file for testing with duplicates dropped.

PROCESS STEPS
Read each record.

Test for record key.

If record is not the same as before, output it.

Those that are duplicates will be skipped.

Sample 33 ADD FIELDS INTO THE CENTER OF A RECORD
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//infile DD DSN=system.master,DISP=SHR,

// DCB=(LRECL=200,RECFM=FB,BLKSIZE=6000)

//otfile DD DSN=test.master,DISP=(NEW,CATLG),

// DCB=(LRECL=250,RECFM=FB,BLKSIZE=6000),

// UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)

//SYSIN DD *

* EAGLE COMMANDS INSERT FIELDS *

oldbeg DEFINES (F=infile,P=1,L=100) *1st part

oldend DEFINES (F=infile,P=101,L=125) *end part

wkbeg DEFINES (F=WORKAREA,P=1,L=100) *work 1st part

wkpk1 DEFINES (F=WORKAREA,P=101,L=12) *work new fld

wkfill DEFINES (F=WORKAREA,P=113,L=01) *work filler

wkpk2 DEFINES (F=WORKAREA,P=114,L=12) *work new fld

wkend DEFINES (F=WORKAREA,P=126,L=125) *work end part

pkfill DEFINES X'000C000C000C000C000C000C000C'

loop READ infile. *read file

 MOVE oldbeg TO wkbeg. *save begin part

 MOVE pkfill TO wkpk1. *init new fields

 MOVE ' ' TO wkfill. *clear filler

 MOVE pkfill TO wkpk2. *init new fields

 MOVE oldend TO wkend. *save end fields

 WRITE otfile FROM WORKAREA. *output rec

 GOTO loop. *loop for more

DESCRIPTION
The input file needs to be stretched in the center with new fields.

INPUTS

Production file input.

OUTPUTS

New file for testing added fields.

PROCESS STEPS
Read each record.

Split record and add fields.

Output new record size from workarea.
Sample 34 SYNC MASTER AND PATCH FILE TO MODIFY REC
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//pos DD DSN=system.master,DISP=SHR

//patch DD DSN=test.patches.data,DISP=SHR

//newpos DD DSN=system.master.new,DISP=(NEW,CATLG),

// DCB=(LRECL=250,RECFM=FB,BLKSIZE=6000),

// UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)

//SYSIN DD *

* EAGLE COMMANDS SYNC PATCH FIELDS *

poskey DEFINES (F=pos,P=3,L=8) *master file seq

poslong DEFINES (F=pos,P=45,L=4) *long quantity

patkey DEFINES (F=patch,P=1,L=8) *patch file seq

patvalue DEFINES (F=patch,P=10,L=4) *patch value

loop SYNC poskey, patkey. *automatic reads

 IF poskey = patkey *if match

 MOVE patvalue TO poslong. * replace value

 WRITE newpos FROM pos. *init new fields

 GOTO loop. *loop for more

/*

//
DESCRIPTION
The input master file called "Positions" must be patched on certain

records. The Patch file will contain the matching key and the new

value.

INPUTS

Production file input & the patch file.

OUTPUTS

New file for with the field replaced.

PROCESS STEPS
Sync read both files.

When both files match then replace value.

Output new record.
Sample 35 COMPARE MASTER RECORDS ON A CONTROL LIST
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//today DD DSN=system.master(+0),DISP=SHR

//yestd DD DSN=system.master(-1),DISP=SHR

//list DD DSN=test.list,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS SYNC COMPARE LIST *

todaykey DEFINES (F=today,P=1,L=34) *keys

yestdkey DEFINES (F=yestd,P=1,L=34) *

listkey DEFINES (F=list,P=1,L=34) *

loop SYNC todaykey - *automatic reads

 yestdkey -

 listkey.

 IF listkey = todaykey *if matches list

 GOTO process. * compare

 IF listkey = yestdkey *if matches list

 GOTO process. * compare both

 GOTO loop. *skip compare

process COMPARE today TO yestd. *compare

 GOTO loop.
DESCRIPTION
Two master files will compare only those records that are on the

control file list.

INPUTS

Yesterday and today's master files, and a control list to match keys.

OUTPUTS

Compare report.

PROCESS STEPS
Sync read all files.

When either file matches do the compare.

Note:

By allowing the compare on just one file match you will be able to

see adds and deletes as well as changes.
Sample 36 COMPARE BUT EXCLUDE DATE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//today DD DSN=system.master(+0),DISP=SHR

//yestd DD DSN=system.master(-1),DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS COMPARE BUT EXCLUDE *

todaykey DEFINES (F=today,P=1,L=34) *keys

yestdkey DEFINES (F=yestd,P=1,L=34) *

tdate DEFINES (F=today,P=45,L=6) *date

ydate DEFINES (F=yestd,P=45,L=6) *date

loop SYNC todaykey - *automatic reads

 yestdkey

 MOVE ' ' TO tdate. *blank out date

 MOVE ' ' TO ydate. *blank out date

 COMPARE today TO yestd. *compare

 GOTO loop.

/*

//
DESCRIPTION
Two master files will compare but exclude the date field because

we blanked them out.

INPUTS

Yesterday and today's master files.

OUTPUTS

Compare report.

PROCESS STEPS
Sync read all files.

Blank out date fields.

Compare the files.

Note:

Should a file not be present the MOVE request will automatically

be skipped.

Sample 37 COMPARE SELECTED FIELDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//today DD DSN=system.master(+0),DISP=SHR

//yestd DD DSN=system.master(-1),DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS COMPARE SELECTED FIELDS*

todaykey DEFINES (F=today,P=1,L=10) *keys

yestdkey DEFINES (F=yestd,P=1,L=10) *

yestdcm# DEFINES (F=yestd,P=1,L=2) *id number

todaycm# DEFINES (F=today,P=1,L=2) *id number

todaybeg DEFINES (F=today,P=1,L=10) *start of rec

tdlong DEFINES (F=today,P=11,L=2) *long x'000C' fld

tdshort DEFINES (F=today,P=13,L=2) *short x'000C' fld

todayend DEFINES (F=today,P=14,L=66) *end of record

yestdbeg DEFINES (F=yestd,P=1,L=10) *start of rec

ytlong DEFINES (F=yestd,P=11,L=2) *long x'000C' fld

tyshort DEFINES (F=yestd,P=13,L=2) *short x'000C' fld

yestdend DEFINES (F=yestd,P=14,L=66) *end of record

loop SYNC todaykey - *automatic reads

 yestdkey

 IF yestdcm# = '54' *if id 54

 PERFORM process. * yes-process

 IF yestdcm# = '30' *if id 54

 PERFORM process. * yes-process

 IF todaycm# = '54' *if id 54

 PERFORM process. * yes-process

 IF todaycm# = '30' *if id 54

 PERFORM process. * yes-process

 GOTO loop. *

process MOVE ' ' TO todaybeg. *clear fields

 MOVE ' ' TO todayend. *

 MOVE ' ' TO yestdbeg. *

 MOVE ' ' TO yestdend. *

 COMPARE today TO yestd. *compare

 RETURN. *exit

DESCRIPTION
Two master files will compare but only the two "long" and "short"

fields will compare.

INPUTS

Yesterday and today's master files.

OUTPUTS

Compare report.

PROCESS STEPS
Sync read all files.

Blank out fields.

Compare the files.
Sample 38 COMPARE QUANTITY HISTORY TRACE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//file01 DD DSN=system.master(+0),DISP=SHR

//file02 DD DSN=system.master(-1),DISP=SHR

//file03 DD DSN=system.master(-2),DISP=SHR

//file04 DD DSN=system.master(-3),DISP=SHR

 .

 . (illustration only)

 .

//file99 DD DSN=system.master(-98),DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS COMPARE TRACE *

key01 DEFINES (F=file01,P=1,L=10) *keys

key02 DEFINES (F=file02,P=1,L=10) *

key03 DEFINES (F=file02,P=1,L=10) *

 .

 . (illustration only)

 .

key99 DEFINES (F=file02,P=1,L=10) *

loop SYNC key01 - *automatic reads

 key02 -

 key03 - etc...

 key99.

 MOVE ' ' to (F=file01,P=1,L=74) *clear all but qty

 MOVE ' ' to (F=file02,P=1,L=74) *clear all but qty

 MOVE ' ' to (F=file03,P=1,L=74) *clear all but qty

 MOVE ' ' to (F=file99,P=1,L=74) *clear all but qty

 COMPARE file01 TO file02. *compare

 COMPARE file02 TO file03. *compare

 COMPARE file03 TO file99. *compare

 GOTO loop.
DESCRIPTION
The input files get their fields blanked out before the staggered

compares.

INPUTS

Up to 99 files used.

OUTPUTS

Compare report.

PROCESS STEPS
Sync read all files.

Blank out fields.

Compare the files.
Sample 39 PRINT ALL REFERENCES TO A FILE / PROGRAM
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//lib DD DSN=prod.proclib,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* PRINT ALL PROCS USING THE BANK FILE AND *

* DISPLAY THE PROGRAM USING IT. *

card DEFINES (F=lib,P=1,L=80) *card area

holdpgm DEFINES (F=WORKAREA,P=1,L=80) *hold pgm area

holdfile DEFINES (F=WORKAREA,P=100,L=80) *hold file name

loop READPDS lib FOR FT******. *read "FT" members

 SCANTEST lib FOR ' EXEC '. *

 IF SCANHIT OF lib = 'Y' *if exec card

 MOVE card TO holdpgm. * y-save pgm card

 SCANTEST lib FOR 'DC130UR.NDC030.BANK'.

 IF SCANHIT OF lib = 'Y' *if file found

 MOVE card TO holdfile * y-save file

 MOVE holdpgm TO card * -reset for print

 PRINT lib * -print pgm name

 MOVE holdfile TO card * -reset file card

 PRINT lib. * -print file

 GOTO loop. *loop
DESCRIPTION
This sample will produce a quick display of the file we are

searching for with its program name using it.

INPUTS

Production procedure library.

OUTPUTS

EAGLER02 report prints.

PROCESS STEPS
Read each member record.

Search and save each EXEC card.

Search for file and when found print the previously save exec card

print the file card.

Loop until the library is done.
Sample 40 SCAN PROCLIB FOR FILE, PRINTING PGM & PROC
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//EAGLER08 DD DUMMY,DCB=BLKSIZE=133

//lib DD DSN=prod.proclib,DISP=SHR

//display DD SYSOUT=*,(LRECL=80,RECFM=FBA,BLKSIZE=6000)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* PRINT ALL PROCS USING THE BANK FILE AND *

* DISPLAY THE PROGRAM USING IT. *

workmemp DEFINES (F=WORKAREA,P=8,L=8) *prt member name

workpgm DEFINES (F=WORKAREA,P=20,L=8) *save prog name

worklit DEFINES (F=WORKAREA,P=2,L=32) *prt literal

workval DEFINES (F=WORKAREA,P=34,L=40) *prt scan value

workmem DEFINES (F=WORKAREA,P=200,L=8) *save member name

scanlit DEFINES C'PROGRAMS (BY PROC) WHICH ACCESS'

scanval DEFINES C'BG000CD.GDC000.BALANCE.CONTROL'

colhdgs DEFINES C' -PROC- -PROGRAM-'

 MOVE scanlit TO worklit. *init work titles

 MOVE scanval TO workval. *

 WRITE display FROM WORKAREA. *

 MOVE ' ' TO workval. *

 MOVE colhdgs TO worklit. *

 WRITE display FROM WORKAREA. *

 MOVE ' ' TO workval. *

 MOVE ' ' TO worklit. *

loop READPDS lib FOR FT******. *read "FT" members

 SCANTEST lib FOR ' PGM='. *if jcl stmt has

 IF SCANHIT OF lib = 'Y' * pgm= then save

 MOVE (F=lib,P=LOC+4,L=8) TO workpgm.

 SCANTEST lib FOR scanval. *if jcl stmt has

 IF SCANHIT OF lib = 'Y' * dsn= scanval

 IF MEMNAME OF lib NOT = workmem * print members

 MOVE MEMNAME OF lib TO workmem * only for 1st

 MOVE MEMNAME OF lib TO workmemp * program listed

 GOTO CHKPRT. *

 IF SCANHIT OF lib = 'Y' * otherwise reset

 IF MEMNAME OF lib = workmem * print member

 MOVE ' ' TO workmemp.

chkprt IF SCANHIT OF lib = 'Y' * print prog name

 WRITE display FROM WORKAREA. *

 GOTO loop. *loop

//* - - - SAMPLE OUTPUT - - -

//*

//* PROGRAMS (BY PROC) WHICH ACCESS BG000CD.GDC000.BALANCE.CONTROL

//* -PROC- -PROGRAM-

//* BG010CR &GSC210,

//* &GSC220,

//* &GSC230, etc....
DESCRIPTION
This sample will produce a quick formatted display of the file we

are searching for with its proc & programs using it.

INPUTS

Production procedure library.

OUTPUTS

Display file for sysout report.

PROCESS STEPS
Read each member record. Search and save each PGM card.

Search for file and when found print the previously saved pgm

name print proc name if 1st time. Loop until the library is done.
Sample 41 READ SEQUENTIAL FILE AND CREATE PDS MEMBERS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.load.jcl,DISP=SHR

//lib DD DSN=test.proclib,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* READ SEQ FILE AND FOR EVERY JOB CARD USE *

* THE JOB NAME TO CREATE A SEPARATE MEMBER *

jobname DEFINES (F=filein,P=3,L=8) *job card //FT???UD

holdname DEFINES (F=WORKAREA,P=1,L=8) *save membername

loop READ filein. *read seq file

 SCANTEST filein FOR ' JOB ' *if job card

 IF SCANHIT OF filein = 'Y' *

 MOVE jobname to holdname. * yes-save name

 MOVE holdname TO MEMNAME OF filein. *set membername

 WRITEPDS lib FROM filein. *output member rec

 GOTO loop. *loop

/*

//
DESCRIPTION
This sample loads a pds from a sequential file using the job card to

determine the member name to set.

INPUTS

Sequential file input.

OUTPUTS

PDS file out.

PROCESS STEPS
Read each record looking for a job card.

When job card found, set the member name.

Write the pds using the seq file as source.

Loop until the library is done.
Sample 42 MERGE ALL MEMBERS TO A SINGLE MEMBER
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=test.proclib1,DISP=SHR

//libout DD DSN=test.proclib2,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* READ PDS FILE AND MERGE ALL MEMBERS INTO *

* ONE MEMBER CALLED "COMBINED" *

loop READPDS libin FOR ********. *read all members

 MOVE 'combined' TO MEMNAME OF libin. *reset memname

 WRITEPDS libout FROM libin. *output rec

 GOTO loop. *loop

/*

//
DESCRIPTION
This sample demonstrates the technique to reset the member name

which will combine members.

INPUTS

PDS file input.

OUTPUTS

PDS file out.

PROCESS STEPS
Read each record.

Reset input library's member name

Write the member record. Because the name never changes, all the

records get combined.

Loop until the library is done
Sample 43 INSERT A /*ROUTE CARD IN EACH MEMBER
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=test.proclib1,DISP=SHR

//libout DD DSN=test.proclib2,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

newcard DEFINES (F=libin,P=1,L=80) *new card area

value DEFINES '/*ROUTE PRINT NEWYORK' *new value

loop READPDS libin FOR ********. *read all members

 SCANTEST libin FOR '/*ROUTE XEQ' *if this is a xeq card

 IF SCANHIT OF libin = 'Y' *

 WRITEPDS libout FROM libin *output xeq

 MOVE value to newcard. *set up new card

 WRITEPDS libout FROM libin. *output rec

 GOTO loop. *loop

/*

//
DESCRIPTION
This sample will insert an additional record after each XEQ card.

INPUTS

PDS file input.

OUTPUTS

PDS file out.

PROCESS STEPS
Read each record.

When an XEQ card is found, XEQ card will be written and the new

card will be added.

Loop until the library is done.
Sample 44 DELETE A /*ROUTE CARD IN EACH MEMBER
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=test.proclib1,DISP=SHR

//libout DD DSN=test.proclib2,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

loop READPDS libin FOR ********. *read all members

 SCANTEST libin FOR '/*ROUTE PRINT' *if this is a print

 IF SCANHIT OF libin = 'Y' *

 DELETE libin. *set as not available

 WRITEPDS libout FROM libin. *output rec

 GOTO loop. *loop

/*

//

DESCRIPTION
This sample will delete the /*ROUTE PRINT cards by making

those records "not available".

INPUTS

PDS file input.

OUTPUTS

PDS file out.

PROCESS STEPS
Read each record.

Set delete indicator when a PRINT card is found.

Output all active records.

Loop until the library is done.
Sample 45 MASS JCL SCAN
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=test.proclib1,DISP=SHR

//reader DD SYSOUT=(A,INTRDR),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=80)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

newcard DEFINES (F=libin,P=1,L=80) *new card area

value DEFINES '// TYPRUN=SCAN, ' *new value

loop READPDS libin FOR ********. *read all members

 SCANTEST libin FOR ' JOB ' *if this a job card

 IF SCANHIT OF libin = 'Y' *

 WRITE reader FROM libin *output xeq

 MOVE value to newcard. *set up new card

 WRITE reader FROM libin. *output rec

 GOTO loop. *loop

/*

//
DESCRIPTION
This sample will insert a scan request and then submit the record to

the internal reader. Sample assumes job cards will have two or

more lines.

INPUTS

PDS file input.

OUTPUTS

The internal reader.

PROCESS STEPS
Read each record.

When an JOB card is found, JOB card will be written and the new

card will be added.

Loop until the library is done.
Sample 46 COMPARE CONTROL CARD LIBS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prod DD DSN=prod.cntlcard,DISP=SHR

//test DD DSN=test.cntlcard,DISP=SHR

//SYSIN DD *

high DEFINES X'FFFFFFFFFFFFFFFF' *high values

 PERFORM readprod. *init reads

 PERFORM readtest. *

process IF RECORDSW OF prod = 'Y' *if at end

 MOVE high TO MENNAME OF prod. * y-set high values

 IF RECORDSW OF test = 'Y' *if at end

 MOVE high TO MEMNAME OF test. * y-set high values

 IF MEMNAME OF prod = MEMNAME OF test

 COMPARE prod TO test *if names match

 PERFORM readprod * then compare recs

 PERFORM readtest *

 GOTO process.

 IF MEMNAME OF prod > MEMNAME OF test

 DELETE test *if test has more recs

 PERFORM readtest * then drop test rec

 GOTO process. *

 IF MEMNAME OF prod < MEMNAME OF test

 DELETE prod *if prod has more recs

 PERFORM readprod * then drop prod rec

 GOTO process. *

 GOTO loop. *loop for more

readprod READPDS prod FOR FT******. *read prod

 RETURN.

readtest READPDS test FOR FT******. *read test

 RETURN.

DESCRIPTION
This routine will compare the two libraries and not only indicate

member differences but also indicate members missing on either

library by the delete counts (see the stats report).

INPUTS

PDS file input.

OUTPUTS

The compare and stats reports.

PROCESS STEPS
Read initial records both files.

If the members match compare.

If one member is higher then re-sync.

Loop until the libraries are done.
Sample 47 SEND JCL TO PRINTER WITH PAGE EJECTS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=prod.proclib,DISP=SHR

//display DD SYSOUT=*,DCB=(LRECL=90,RECFM=FBA,BLKSIZE=9000)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

prtline DEFINES (F=WORKAREA,P=2,L=89) *print line

prtcc DEFINES (F=WORKAREA,P=1,L=1) *carriage control

prtmem DEFINES (F=WORKAREA,P=74,L=8) *print member name

memwork DEFINES (F=WORKAREA,P=200,L=8) *hold mem name

jclrec DEFINES (F=libin,P=1,L=80) *jcl record

loop READPDS libin FOR ********. *init reads

 MOVE ' ' TO prtcc. *clear cc control

 IF MEMNAME OF libin NOT = memwork *if new member

 MOVE MEMNAME OF libin TO memwork * save name

 MOVE '1' TO prtcc. * set page eject

 MOVE jclrec TO prtline. *set print detail

 MOVE memwork TO prtmem. *set member name

 WRITE display FROM libin. *output print line

 GOTO loop. *loop for more

/*

//
DESCRIPTION
This routine will cause page ejects for each new member started.

INPUTS

PDS file input.

OUTPUTS

The display sysout.

PROCESS STEPS
Read library.

Set page eject when member names change.

Set up detail into workarea making room for cc.

Loop until the libraries are done.
Sample 48 DISPLAY ADDRESS TEXT
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//test DD DSN=test.address.file,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

loop READ test. *read

 EXHIBIT (F=test,P=15,L=30) *display address

 GOTO loop. *loop

/*

//
DESCRIPTION
This sample displays address on R01.

INPUTS

Address file.

OUTPUTS

EAGLER01 reports addresses.

PROCESS STEPS
Read file.

Display field.

Loop until done.

Sample 49 CHECK SPELLING ON TEXT FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//text DD DSN=test.pgmdoc.text,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

loop READPDS text FOR PGM*****. *read "PGM" documents

 SPELL text. *check spelling

 GOTO loop. *loop

/*

//

DESCRIPTION
This sample will produce on R01 all words not found on it's

dictionary.

INPUTS

Documentation library.

OUTPUTS

EAGLER01 reports misspelled words.

PROCESS STEPS
Read pds members starting with PGM.

Separate each word & check dictionary.

If not found print error on R01.

Loop until the library is done.

Sample 50 SOURCE CODE COMPARE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prod DD DSN=prod.project.cobol,DISP=SHR

//test DD DSN=test.project.cobol,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

loop READPDS prod FOR ACCP01. *read test program

 READPDS test FOR ACCP01. *read prod version

 LOADSRC prod TO test. *load & compare

 GOTO loop. *loop until load done

/*

//

DESCRIPTION
This sample will load into the source code compare tables prod &

test versions of ACCP01. Compare will automatically occur when

both files are EOF.

INPUTS

Prod & test libraries.

OUTPUTS

EAGLER06 reports changes to prod version.

PROCESS STEPS
Read source from pds libraries.

Load both into compare tables.

Continue load until both files done.

Compare occurs at EOJ processing.

Sample 51 LIBRARY SOURCE CODE COMPARE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//before DD DSN=prod.project.ctlcard,DISP=SHR

//after DD DSN=test.project.ctlcard,DISP=SHR

//SYSIN DD *

* comprehensive library compare *

hold DEFINES C'AAAAAAAA' *hold member

high DEFINES X'FFFFFFFFFFFFFFFF' *high values

seqb DEFINES (F=before,P=72,L=9) *seq num

seqa DEFINES (F=after,P=72,L=9) *seq num

hldid DEFINES 'Y' *file ind

 READPDS before FOR ******** *init reads

 READPDS after FOR ******** *

loop IF RECORDSW OF before = 'Y' *if eof set high

 MOVE high TO MEMNAME OF before. *

 IF RECORDSW OF after = 'Y' *

 MOVE high TO MEMNAME OF after. *

 IF MEMNAME OF before = MEMNAME OF after

 IF MEMNAME OF before = hold *

 MOVE ' ' TO seqb *if same member

 MOVE ' ' TO seqa * then clear seq

 LOADSRC before after * load and read

 READPDS before FOR ******** * next records

 READPDS after FOR ******** *

 GOTO loop. *

 IF MEMNAME OF before > hold *if member done

 IF MEMNAME OF after > hold * then request

 COMPSRC * a compare

 GOTO reset. * and reset hold

 IF MEMNAME OF before = hold *if before not

 GOTO loadb. * done finish it

 IF MEMNAME OF after = hold *if after not

 GOTO loada. * done finish it

 GOTO loop. *

loadb MOVE RECORDSW OF after TO hldid. *save file ind

loadbl IF MEMNAME OF before = hold *

 MOVE 'E' TO RECORDSW OF after *finish up before

 MOVE ' ' TO seqb * member loading

 LOADSRC before after * before reqst

 MOVE hldid TO RECORDSW OF after * reset ind

 READPDS before FOR ******** * compare

 GOTO loadbl. * and reset

 COMPSRC. *

 GOTO reset. *

loada MOVE RECORDSW OF before TO hldid. *save file ind

loadal IF MEMNAME OF after = hold *finish after

 MOVE 'E' TO RECORDSW OF before *switch set empty

 MOVE ' ' TO seqa *or deleted to

 LOADSRC before after *avoid before rec

 MOVE hldid TO RECORDSW OF before * reset ind

 READPDS after FOR ******** *being loaded

 GOTO loadal. *too early

 COMPSRC. *

 GOTO reset. *

reset IF MEMNAME OF before = MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before < MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before > MEMNAME OF after

 MOVE MEMNAME OF after TO hold.

 GOTO loop. *

/*

//
DESCRIPTION
This sample will load into the source code compare tables before &

after versions of all members.

INPUTS

Before & after libraries.

OUTPUTS

EAGLER06 reports changes to prod version.

PROCESS STEPS
Read source from pds libraries.

Load both into compare tables.

Continue load & compare until both files done.

Compare occurs at EOJ processing.
Sample 52 MASS COMPILE PROCESSING
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//jclin DD DSN=test.cobol.cntl,DISP=SHR

//ctlin DD DSN=test.pgm.cards,DISP=SHR

//reader DD SYSOUT=(A,INTRDR),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=80)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

ctlname DEFINES (F=ctlin,P=1,L=6) *pgm name

jclname DEFINES (F=jclin,P=LOC,L=8) *replace name

ctl READ ctlin. *read control card

jcloop READ jclin. *read next jcl stmt

 IF RECORDSW OF ctlin = 'Y' *if end of control cards

 GOTO EOJ. * y-shut down

 IF RECORDSW OF jclin = 'Y' *if end of control cards

 RESTART jclin * y-restart file

 GOTO ctl. * y-get next ctl card

 SCANTEST jclin FOR 'PGMXXXXX' *scan for pgm name

 IF SCANHIT OF jclin = 'Y' *if found

 EDIT ctlname TO jclname. * y-replace name

 WRITE reader FROM jclin. *output jcl to reader

 GOTO jcloop. *loop until load done

DESCRIPTION
This sample scan/replaces the program name for the program name

found on the control file. The JCL is submitted to the reader to be

processed. Note, the EDIT verb will shift to the left until a blank is

found.

INPUTS

Compile JCL and a control list of programs.

OUTPUTS

JCL on reader queue.

PROCESS STEPS
Read program to compile.

Scan/replace program in JCL.

Submit JCL to reader.

When JCL finished restart JCL and get next control program name

to use.
Sample 53 CALL USER MODULES FOR PROCESSING
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//userfile DD DSN=test.user.file,DISP=SHR

//output DD DSN=test.mst.extract,DISP=(NEW,CATLG),

// DCB=(LRECL=50,RECFM=FB,BLKSIZE=50)

//SYSIN DD *

recwk DEFINES (F=WORKAREA,P=1,L=50) *workarea

recamt DEFINES (F=WORKAREA,P=5,L=5,T=P) *workarea amt packed

userind DEFINES (F=WORKAREA,P=45,L=1) *user ind

lenght DEFINES '50' *length of work

amount DEFINES '01498' *amount

total DEFINES '0000000000' *total work area

done DEFINES 'NO ' *done ind

loop CALL ACCP01 USING recwk - *get user record

 done. *

 IF RETURN-CODE NOT = '0' *if cc not 0

 EXHIBIT 'bad return code' * display msg

 EXHIBIT RETURN-CODE * display code

 GOTO EOJ. * shutdown

 IF done = 'YES' *if user done

 EXHIBIT total * y-print total

 GOTO EOJ. * y-shut down

 EXHIBIT recwk. *display user rec

 MASKAND X'80' TO userind *set only high bit on

 ADD recamt TO total. *tally amounts

 CALL ACCP09 USING total - *call 09

 amount - *

 recwk. *

 WRITE output FROM WORKAREA. *output extract

 GOTO loop. *
DESCRIPTION
This sample uses a user routine to issue reads and special

processing. Processing will stop when the user routine request

"done". Note, because Eagle88 does not request a read,

processing will continue until forced to shut down.

INPUTS

User I/O facility.

OUTPUTS

Extract file.

PROCESS STEPS
Read via user I/O routine set off all but high bit accum total (can

accum unlike types/sizes)

Call module to calculate

Output extract & loop until done
Sample 54 RESET NUMERIC FIELDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//input DD DSN=test.mstr.file,DISP=SHR

//output DD DSN=test.mstr.output,DISP=(NEW,CATLG),

// DCB=(LRECL=50,RECFM=FB,BLKSIZE=50)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

amount DEFINES (F=input,P=23,L=3,T=P) *amount

fix DEFINES X'00000C' *zeros packed

loop READ input. *read rec

 IF amount NOT NUMERIC *if amt not numeric

 MOVE fix TO amount. * set to zero

 WRITE output FROM input. *output new

 GOTO loop. *

/*

//
DESCRIPTION
This sample will reset amount fields that are not numeric.

INPUTS

Master file input.

OUTPUTS

New master file will fixes.

PROCESS STEPS
Read records.

Test for not numerics.

Reset packed field if not numeric.

Output extract & loop until done.

Sample 55 TALLY NUMERIC FIELDS
]
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//input DD DSN=test.mstr.file,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

amt1 DEFINES (F=input,P=15,L=2,T=P) *amount

amt2 DEFINES (F=input,P=17,L=5,T=C) *amount

amt3 DEFINES (F=input,P=22,L=2,T=X) *amount

amtx DEFINES C'000' *remainder

totamt DEFINES C'0000000000000' *zeros char

loop READ input. *read rec

 IF amt1 NUMERIC *if amt numeric

 ADD amt1 TO totamt. * accum

 IF amt2 NUMERIC *if amt numeric

 ADD amt2 TO totamt. * accum

 IF amt3 NUMERIC *if amt numeric

 SUBTRACT amt3 FROM totamt. * reduce amt

 MULTIPLY amt2 by amt1. *multiply sample

 DIVIDE amt2 by amt1 REMAINDER amtx *divide sample

 WRITE output FROM input. *output new

 GOTO loop. *

EPILOGUE EXHIBIT totamt. *display total

 GOTO EOJ. *stop run
DESCRIPTION
This sample will accumulate numeric fields of different formats.

Note, total will display after file is eof because the EPILOGUE tag

will get control. GOTO EOJ must be use to terminate a job using

EPILOGUE or a loop will result.

INPUTS

Master file input.
OUTPUTS

Total amount.
PROCESS STEPS
Read records.

If numeric tally amt1, amt2.

If numeric reduce by amt3.

Loop until done.

Display when eof.
Sample 56 CONVERT NUMERIC FIELDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//input DD DSN=test.mstr.file,DISP=SHR

//output DD DSN=test.mstr.output,DISP=(NEW,CATLG),

// DCB=(LRECL=50,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

* EAGLE COMMANDS START HERE *

amt1 DEFINES (F=input,P=15,L=2,T=P) *amt pack

amt2 DEFINES (F=input,P=17,L=5,T=C) *amt char

amt3 DEFINES (F=input,P=22,L=4,T=X) *amt hex

amt4 DEFINES (F=input,P=33,L=1,T=C) *amt char

amt1X DEFINES (F=input,P=25,L=4,T=X) *amt hex

amt2X DEFINES (F=input,P=37,L=3,T=P) *amt pack

amt3X DEFINES (F=input,P=01,L=07,T=C) *amt char

amt3XS DEFINES (F=input,P=07,L=01,T=C) *amt char

amt4x DEFINES (F=input,P=34,L=1,T=P) *amt pack

loop READ input. *read rec

 UNPACK amt3 TO amt3x *unpack field

 MASKOR X'F0' TO amt3xs *set sign

 PACK amt2 TO amt2x *unpack field

 CVTBIN amt1 TO amt1x *convert to binary

 CVTDEC amt4 TO amt4x. *convert to packed

 MOVEN amt4 TO amt4x. *convert to packed

 MOVEN amt3 TO amt3x *convert to display

 MOVEN amt1 TO ant1x. *convert to binary

 WRITE output FROM input. *output new

 GOTO loop. *

DESCRIPTION
This sample shows various ways to convert numbers into different

formats.

INPUTS

Master file input.

OUTPUTS

New master output.

PROCESS STEPS
Read records.

Convert fields.

Output new record.

Loop until done.
Sample 57 IMS DATA BASE ACCESS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88IMS,PSB='psbname'

//userdb1 DD DSN=test1.database,DISP=SHR

//userdb2 DD DSN=test2.database,DISP=SHR

//userdb3 DD DSN=test3.database,DISP=SHR

//seqfile DD DSN=test.seq.file,DISP=(NEW,CATLG),

// DCB=(LRECL=200,RECFM=FB,BLKSIZE=6000),

// SPACE=(CYL,(5,5),RLSE),UNIT=SYSDA

//SYSIN DD *

**

* DLI DATA BASE SAMPLE

**

ENTRY DLITCBL USING
pcb1 -

pcb2 -

pcb3.

pcb1 DLILINK (N=pcb1,P=1,L=50) *pcb area 1

pcb1rc DLILINK (N=pcb1,P=11,L=2) *

pcb2 DLILINK (N=pcb2,P=1,L=50) *pcb area 2

pcb2rc DLILINK (N=pcb2,P=11,L=2) *

pcb3 DLILINK (N=pcb3,P=1,L=50) *pcb area 3

pcb3rc DLILINK (N=pcb3,P=11,L=2) *

outarea DEFINES (F=WORKAREA,P=1,L=500) *output file build area

insarea DEFINES (F=WORKAREA,P=1000,L=100) *ims i/o area1

clmarea DEFINES (F=WORKAREA,P=2000,L=170) * area2

pvdarea DEFINES (F=WORKAREA,P=3000,L=200) * area3

gn DEFINES 'GN ' *access get next

ssa1 DEFINES 'INSURED ' *segment name

ssa2 DEFINES 'CLAIM ' *segment name

ssa3 DEFINES 'PROVIDER ' *segment name

total DEFINES P'0000000' *

good DEFINES ' ' *

loop1 CALL CBLTDLI USING gn, pcb1, insarea, ssa1.

 IF pcb1rc NOT EQUAL good

 EXHIBIT total

 EXHIBIT pcb1

 GOTO EOJ.

 MOVE insarea TO outarea.

 WRITE outfile FROM WORKAREA.

 ADD '1' TO total.

 IF total > '035'

 MOVE P'0000000' TO total

 GOTO loop2.

 GOTO loop1.

loop2 CALL CBLTDLI USING gn, pcb2, clmarea, ssa2.

 IF pcb2rc NOT EQUAL good

 EXHIBIT pcb2

 GOTO EOJ.

MOVE clmarea TO outarea.

WRITE outfile FROM WORKAREA.

ADD '1' TO total.

IF total > '035'

 MOVE P'0000000' TO total

 GOTO loop3.

 GOTO loop2.

loop3 CALL CBLTDLI USING gn, pcb3, pvdarea, ssa3.

 IF pcb3rc NOT EQUAL good

 EXHIBIT total

 EXHIBIT pcb3

 GOTO EOJ.

MOVE pvdarea TO outarea.

WRITE outfile FROM WORKAREA.

ADD '1' TO total.

IF total > '035'

 GOTO EOJ.

GOTO loop3.

DESCRIPTION
This sample shows three database segments being written out to a

sequential file. File compares prints, scan/replace tasks can also be

done.

INPUTS

Data bases for insured, claim, provider segments.

OUTPUTS

Sequential file out with 35 records of each type.

PROCESS STEPS
Read segments via DLI call.

Loop 35 times for each segment type.

Output fixed record size.
Sample 58 CROSS REFERENCE AN APPLICATION ON PANVALET
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(1,0)

//STEP1 EXEC EAGLE88

//source DD DSN=system.source.panlib,DISP=SHR

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SYSIN DD *

* EAGLE COMMANDS XREF EXCEPT 900XX *

loop READPAN source FOR ********** . *read all members

 IF MENNAME OF source = 'PAC900XX ' *if test pgm

 DELETE source. * skip it

 XREF source. *release record to xref

 GOTO loop. *get more

/*

//

DESCRIPTION
System wide cross reference with the exclusion of a test program

PAC900XX from a Panvalet file. Task does not lock out other

users.

INPUTS

Cobol or PL1 source statements

Sortwk for work files

OUTPUTS

Report EAGLER07 XREF.

PROCESS STEPS
Read each source statement.

Skip records from the PAC900XX member.

Release to Xref facility to select names with a dash (-) or

underscore (_).

At end of job the report will automatically sort all data names and

report.

Sample 59 SCAN LIBRARIAN FILE FOR VALUES
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//mastin DD DSN=prod.source,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS WHERE IS PGM USED? *

loop READLIB mastin FOR ft****** . *read all "FT" members

 SCAN mastin FOR 'FDS040' . *scan & print hits- member

 GOTO loop. *name appear on R02 report

/*

//
DESCRIPTION
Read Librarian file, each record in each "FT" member.

INPUTS

Prod source code.

OUTPUTS

EAGLER02 report prints hits with member names.

PROCESS STEPS
Read file member reocrds.

Search for values and print if found.
Sample 60 SCAN/REPLACE DATA ON A FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=balance.control.file,DISP=SHR

//fileout DD DSN=fixed.balance.control.file,DISP=(,CATLG,DELETE),

// DCB=(RECFM=FB,LRECL=10000,BLKSIZE=10000),

// UNIT=SYSDA,SPACE=(BLK,(1))

//SYSIN DD *

* EAGLE COMMANDS START HERE *

* THIS FILE HAS ONLY ONE RECORD BUT MULTIPLE*

* +43 AND +5 BALANCE CONTROL COUNTS TO CLEAR*

* THE FIRST +5 MUST BE SKIPPED *

count DEFINES (F=filein,L=2,P=LOC) *CLEARING FIELD

count1 DEFINES (F=filein,L=1,P=2889) *CLEARING FIELD

count2 DEFINES (F=filein,L=2,P=3898) *CLEARING FIELD

 READ filein. *read old bal cntl file

 PRINT filein. *print before image

 MOVE X'0C' TO count1 *clear count

 MOVE X'000C' TO count2 *clear count

loop1 SCANTEST filein FOR X'043C' *find packed count

 IF SCANHIT OF filein = 'Y' *if scan found

 MOVE X'000C' TO count * yes=clear count

 GOTO loop1. *loop for more fields

 SCANTEST filein for X'005C'. *find & skip 1st +5

loop2 SCANSTEP filein FOR X'005C'. *find next count

 IF SCANHIT OF filein = 'Y' *if scan found

 MOVE X'000C' TO count * yes=clear count

 GOTO loop2. *loop for more fields

 WRITE fileout FROM filein. *write rec out

 GOTO EOJ. *stop run
DESCRIPTION
Read input file and scan/replace values.

INPUTS

Balance Control File.

OUTPUTS

EAGLER02 report prints before & after images.

PROCESS STEPS
Read file.

Search for values and set location pointer.

Replace value using the MOVE verb and P=LOC which points to

the starting location of the scan value.
Sample 61 BUILD A SYSTEM DATASET NAME CROSS REFERENCE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//procin DD DSN=prod.proclib,DISP=SHR

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SYSIN DD *

* EAGLE COMMANDS *

loop READPDS procin FOR ******** . *read all members

 XREFDSN procin. *find DSN= & xref

 GOTO loop. *get more

/*

//

DESCRIPTION
System wide cross reference of the data set names as identified by

the DSN= key in the JCL.

INPUTS

Production proclib members

Sortwk for work files

OUTPUTS

Report EAGLER07 XREF.

PROCESS STEPS
Read each JCL statement.

Release to Xref facility to select names with a DSN= keyword.

At end of job the report will automatically sort all data names and

report.

Sample 62 MASTER FILE WITH VARIABLE TRAILERS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=8000,BLKSIZE=13030,RECFM=VB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=80,BLKSIZE=6000,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

trllen DEFINES (F=prodfile,P=loc,L=1,T=X) *rec trailer size

trlid DEFINES (F=prodfile,P=loc+1,L=2) *trailer id

trlarea DEFINES (F=prodfile,P=loc,l=var) *var trailer area

wkarea DEFINES (F=WORKAREA,P=1,l=80) *work area

newrec READ prodfile. *read prod

 CVTBIN '20' TO LOC OF prodfile. *skip fixed portion

 PERFORM trailer. *do trailer extract

extloop IF trlid = '99' *last trailer

 GOTO newrec. * yes-read new rec

 ADD trllen TO LOC OF prodfile. * no-up location

 PERFORM trailer. * -extract trailer

 GOTO extloop. * -go for next trl

trailer CVTBIN trllen TO VAR OF prodfile. *set trailer size for

 MOVE trlarea TO wkarea. *moving data

 WRITE testfile FROM workarea. *output trailer

 RETURN. *exit

DESCRIPTION
Read the master file and write all trailer areas for each record. The

master file has fixed area, then any number of variable sections

within the same logical record called a trailer.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Skip the first fixed portion of record.

Output the trailer by manipulating the location and variable length

of the field "trlarea".

Write the output file.
Sample 63 COPY ONLY SELECTED RECORDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=1400,RECFM=FB)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

rectype DEFINES (F=prodfile,P=1,L=2)

* EAGLE COMMANDS START HERE *

copyloop READ prodfile *read prod

 IFX rectype EQUAL X'F7F0' *if record type 70

 WRITE testfile FROM prodfile. * yes-write out record

 GOTO copyloop. *loop for more

/*

//
DESCRIPTION
Read and select only record types "70" from the Production file.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
Read the production file.

Test for record type without numeric conversions.

Write the output file (DCB information is defined in the JCL).
Sample 64 ENCRYPT SOURCE CODE FOR SECURITY
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=comppin.lib,DISP=SHR

//libout DD DSN=compout.lib,DISP=OLD

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

password DEFINES (F=WORKAREA,P=1,L=8)

alpha1 DEFINES (F=WORKAREA,P=1,L=2)

digits DEFINES (F=WORKAREA,P=3,L=4,T=X)

alpha2 DEFINES (F=WORKAREA,P=7,L=2)

* EAGLE COMMANDS START HERE *

 MOVE 'Q' TO alpha1. *init password

 MOVE '%@' TO alpha2. *

 MOVE X'000000000C' TO digits. *

copyloop READPDS libin FOR pac*****. *read pac members

 CVTBIN COUNTIN OF libin TO digits. *set password to rec#

 ENCODE libin USING password. *encode 1st time

 ADD '1' TO digits. *up counter

 ENCODE libin USING password. *encode 2nd time

 WRITEPDS libout FROM libin. *write out record

 GOTO copyloop. *loop for more
DESCRIPTION
Read members that need to be encoded.

INPUTS

Source library.

OUTPUTS

Source library out.

PROCESS STEPS
Read the source library members.

Set the middle of the password to record count.

Encode the record.

Up the password counter & encode again.

Write the output file (DCB information is defined in the JCL).
Sample 65 DECODE SOURCE CODE FROM SAMPLE 64
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//libin DD DSN=comppin.lib,DISP=SHR

//libout DD DSN=compout.lib,DISP=OLD

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

password DEFINES (F=WORKAREA,P=1,L=8)

alpha1 DEFINES (F=WORKAREA,P=1,L=2)

digits DEFINES (F=WORKAREA,P=3,L=4,T=X)

alpha2 DEFINES (F=WORKAREA,P=7,L=2)

* EAGLE COMMANDS START HERE *

 MOVE 'Q' TO alpha1. *init password

 MOVE '%@' TO alpha2. *

 MOVE X'000000000C' TO digits. *

copyloop READPDS libin FOR pac*****. *read pac members

 CVTBIN COUNTIN OF libin TO digits. *set password to rec#

 ADD '1' TO digits. *up counter

 DECODE libin USING password. *decode 1st time

 SUBTRACT '1' FROM digits. *up counter

 DECODE libin USING password. *decode 2nd time

 WRITEPDS libout FROM libin. * yes-write out record

 GOTO copyloop. *loop for more

DESCRIPTION
Read members that need to be encoded.

INPUTS

Source library.

OUTPUTS

Source library out.

PROCESS STEPS
Read the source library members.

Set the middle of the password to record count.

Encode the record.

Up the password counter & encode again.

Write the output file (DCB information is defined in the JCL).
Sample 66 ENCODE AN INDIVIDUAL FIELD
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.data,DISP=SHR

//fileout DD DSN=test.out,DISP=OLD

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

password DEFINES 'ariz1414'

len DEFINES X'005a0000'

recfld DEFINES (F=filein,P=45,L=90)

encode DEFINES 'E'

decode DEFINES 'D'

* EAGLE COMMANDS START HERE *

copyloop READ filein. *read records in

 CALL EAGLE16 USING password, - *call EAGLE16 w/ key

 len, - *field length

 recfld, - *field to encode

 encode. *function request E

 WRITE fileout FROM filein. *output records

 GOTO copyloop. *loop for more

DESCRIPTION
Read each record in to be partially encoded.

INPUTS

Test file input.

OUTPUTS

Test file output.

PROCESS STEPS
Read each record.

Locate field to encode via DEFINES label.

Call EAGLE16 module passing parms of password, field length

(full word binary with size in first half word 005a = 90), the field to

encode, and the function code of 'E' to encode or 'D' to decode.

Output record and loop for more.
Sample 67 FB TO A COMPUTED VB RECORD SIZE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodfile DD DSN=comppin.data,DISP=SHR,

// DCB=(LRECL=10,BLKSIZE=1000,RECFM=FB)

//testfile DD DSN=compout.data,DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,

// DCB=(LRECL=14,BLKSIZE=6000,RECFM=VB)

//SYSIN DD *

rec DEFINES (F=prodfile,P=1,L=10)

rechold DEFINES (F=WORKAREA,P=5,L=10)

rdwhold DEFINES (F=WORKAREA,P=1,L=2)

rdwfill DEFINES (F=WORKAREA,P=1,L=4)

area DEFINES (F=WORKAREA,P=1,L=200)

length DEFINES (F=WORKAREA,P=100,L=4)

calrdw DEFINES (F=WORKAREA,P=102,L=2)

spaces DEFINES C' '

 MOVE spaces to area. *init area to spaces

copyloop READ prodfile. *read prod

 MOVE rec TO rechold. *move rec offset 4

 MOVE X'00000000' TO rdwfill *set binary zero fill

 SCANTEST rechold FOR spaces *find end of record

 MOVE LOC OF prodfile TO length *save location pointer

 MOVE calrdw TO rdwhold. *set rdw length

 WRITE testfile FROM WORKAREA. *copy records

 GOTO copyloop. *loop for more
DESCRIPTION
Copy and change the record format from FB to VB. The rdw is

computed by finding the trailing spaces. This sample assumes a

space marks the end of the record, but any unique ending value

could be used.

INPUTS

Production file is defined in system catalog.

OUTPUTS

Test file created in this job.

PROCESS STEPS
First time, set the end of work to spaces.

Read the file.

Move the record to hold.

Issue a scan to find the record's end.

Note: The LOC of ddname is a binary field. Set the rdw with the

LOC value.

Write the output file. (DCB information is defined in the JCL).
Sample 68 COMPRESS A FILE
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.data,DISP=SHR, *info only

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120) *info only

//fileout DD DSN=test.out,DISP=(,CATLG), *

// UNIT=SYSDA,SPACE=(TRK,(3,3)), *

// DCB=(LRECL=85,RECFM=VB,BLKSIZE=3120) *req orig+5

//SYSIN DD *

* EAGLE COMMANDS START HERE *

copyloop READ filein. *read record in

 COMPRESS filein TO WORKAREA. *squeeze the record

 WRITE fileout FROM WORKAREA. *write out vb file

 GOTO copyloop. *loop for more

DESCRIPTION
This sample will compress each record looking for duplicate byte.

The output file
must be JCL defined as VB with an LRECL of at

least 5 bytes more than the original. Block size as large as

reasonable. The 5 bytes are in case a record does not have

compressible data. The record created in WORKAREA will have

the RDW in bytes 1-4 preset. Byte 5 is reserved as a control flag.

INPUTS

Test file input.

OUTPUTS

Test file output.

PROCESS STEPS
Read each record.

Compress the record and set rdw length.

Output record and loop for more.
Sample 69 DECOMPRESS A SELECTED RECORD
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.out,DISP=SHR, *info only

// DCB=(LRECL=85,RECFM=VB,BLKSIZE=3120) *info only

//fileout DD DSN=test.data,DISP=(,CATLG) *

// UNIT=SYSDA,SPACE=(TRK,(3,3)), *new file

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120) *orig size

//SYSIN DD *

* EAGLE COMMANDS START HERE *

type DEFINES (F=filein,P=6,L=3) *record id type

copyloop READ filein. *read record in

 IF type = '815' *If type found

 DECOMPRESS filein TO WORKAREA * expand the record

 WRITE fileout FROM WORKAREA. * write out file

 GOTO copyloop. *loop for more
DESCRIPTION
This sample will decompress a record that was squeezed by the

COMPRESS verb. Each logical record matches the original file.

Therefore, records can be selectively expanded. The record created

in WORKAREA will have the RDW automatically stripped.

INPUTS

Test file input.

OUTPUTS

Test file output.

PROCESS STEPS
Read each record.

Decompress only type 815 records

Output record and loop for more.
Sample 70 STRING MEMBER NAMES TO BUILD LINKAGE CARDS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.member.list,DISP=SHR

//fileout DD DSN=test.cards,DISP=OLD

//SYSIN DD *

* EAGLE COMMANDS START HERE *

member DEFINES (F=filein,P=1,L=8) *member name

constant DEFINES C' include syslib' *literals

flda DEFINES (F=WORKAREA,P=1,L=15) *build area

fldb DEFINES (F=WORKAREA,P=16,L=55) *area for member

cardrec DEFINES (F=WORKAREA,P=1,L=80) *rec area

 MOVE ' ' TO cardrec. *init rec to spaces

loop READ filein. *read members

 MOVE constant TO flda. *move literals

 STRING member, '(r)' INTO fldb *string data

 DELIMITED BY ' '. *

 WRITE fileout FROM filein. *

 GOTO loop. *loop for more
DESCRIPTION
This sample builds include cards for the linkage editor using the

string verb.

INPUTS

Member list in.

OUTPUTS

Linkage cards out.

PROCESS STEPS
Read each record.

Build the linkage card.

Output record and loop for more.
Sample 71 UNSTRING NAME AND ADDRESS INFORMATION
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//filein DD DSN=test.address.file,DISP=SHR

//SYSIN DD *

* EAGLE COMMANDS START HERE *

card DEFINES (F=filein,P=1,l=80) *string input

flda DEFINES (F=WORKAREA,P=001,L=80) *name

fldb DEFINES (F=WORKAREA,P=101,L=80) *title

fldc DEFINES (F=WORKAREA,P=201,L=80) *city

loop READ filein. *read

 UNSTRING card INTO - *break up data

 flda - *looking for comma

 fldb - *to separate fields

 fldc - *

 DELIMITED BY ','.

 EXHIBIT flda. *display values

 EXHIBIT fldb. *

 EXHIBIT fldc. *

 GOTO loop. *loop for more

DESCRIPTION
The sample reads name, title, & city information and separates the

variable length fields into individual fields.

INPUTS

List of names as "nnnn n nnnn, ttttttt, ccccccc"

OUTPUTS

Displays of individual fields

PROCESS STEPS
Read each record.

Separate the characters.

Display fields and loop for more.

Sample 72 IDMS ADS/O SOURCE CODE SCAN
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//STEPLIB DD DSN=company.EAGLE.loadlib,disp=shr

// DD DSN=company.primary.idms.loadlib,DISP=SHR

// DD DSN=SYS2.ID100CD.IDMS.LOADLIB,DISP=SHR

//SYSJRNL DD DUMMY

//SYSCTL DD DSN=SYS2.ID100CD.IDMS.SYSCTLT,DISP=SHR

//SYSOUD DD SYSOUT=*

//SYSDBOUT DD SYSOUT=*

//SYSIN DD *

* ADS/O SOURCE CODE SCAN *

modarea DEFAREA SIZE=168 *memory work space

textarea DEFAREA SIZE=88 *memory work space

rc1work DEFINES (F=modarea,P=1,L=168) *

pgmname DEFINES (F=modarea,P=1,L=8) *first 8 used for pgmname

module DEFINES (F=modarea,P=1,L=32) *full module name

rc2work DEFINES (F=textarea,P=1,L=88) *source code text

codeline DEFINES (F=textarea,P=1,L=4,T=X) *source line number

db1name DEFINES 'dev5dict ' *16 byte dict name

ss1name DEFINES 'idmsnwka ' *16 byte subschema name

rc1name DEFINES 'module-067 ' *record name

rc2name DEFINES 'text-088 ' *text record name

ar1name DEFINES 'ddldml ' *record area

set1name DEFINES 'module-text ' *path name

start BIND RUN-UNIT FOR ss1name DBNAME db1name.

 BIND rc1name TO rc1work. *set work to receive

 BIND rc2name TO rc2work. *

 READY ar1name. *ready retrieval

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *get first module

pgmloop IF IDMS-STATUS NOT = '0000' *if all modules done

 EXHIBIT IDMS-STATUS * yes-finish stats

 GOTO done. *

 ADD '1' TO COUNTIN OF modarea. *up module count

 MOVE pgmname TO MEMNAME OF modarea. *set name in rpts

 MOVE pgmname TO MEMNAME OF textarea. *

 PRINT modarea. *print module name

 PERFORM readcode. *search source

 FIND CURRENT rc1name. *repoint to current

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *get next pgmname

 GOTO pgmloop. *loop until done

readcode OBTAIN FIRST rc2name WITHIN set1name.

codeloop IF IDMS-STATUS NOT = '0000' *end of stmts

 RETURN. * yes-exit

 CVTDEC codeline TO COUNTIN OF textarea. *set line number

 MOVE ' ' TO CODELINE.

*** **add scan verbs here

 SCAN textarea for 'CALL SETMAP'.

 SCAN textarea for 'CALL SETMAP1'.

 OBTAIN NEXT rc2name WITHIN set1name. *get next stmt

 GOTO codeloop. *continue

done FINISH. *wrap up with stats

 EXHIBIT ' '. *

 EXHIBIT '---total modarea---' *

 EXHIBIT COUNTIN OF modarea. *

 EXHIBIT '---total records---' *

 EXHIBIT COUNTIN OF textarea. *

 GOTO eoj. *shutdown
DESCRIPTION
Sample does a source code scan of ADS/O stored on the

dictionary.

INPUTS

IDMS source found on the data dictionary dev5dict.

OUTPUTS

Prints of source code records found.

PROCESS STEPS
Read each module name found.

For each module name, read and scan all it's source statements.

Display all scan hits.
Sample 73 IDMS RECORD AREA SWEEP PRINTS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//STEPLIB DD DSN=company.EAGLE.loadlib,disp=shr

// DD DSN=company.primary.idms.loadlib,DISP=SHR

// DD DSN=SYS2.ID100CD.IDMS.LOADLIB,DISP=SHR

//SYSJRNL DD DUMMY

//SYSCTL DD DSN=SYS2.ID100CD.IDMS.SYSCTLT,DISP=SHR

//SYSOUD DD SYSOUT=*

//SYSDBOUT DD SYSOUT=*

//SYSIN DD *

* record area sweep dump *

umtcxfr DEFAREA SIZE=220 *memory work space

rc1work DEFINES (F=umtcxfr,P=1,L=220) *

db1name DEFINES 'dev5dict ' *16 byte dict name

ss1name DEFINES 'intssc01 ' *16 byte subschema name

rc1name DEFINES 'umtcxfr ' *record name

ar1name DEFINES 'pend-area ' *record area

start BIND RUN-UNIT FOR ss1name DBNAME db1name.

 BIND rc1name TO rc1work. *set work to receive

 READY ar1name. *ready retrieval

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *get first record

loop IF IDMS-STATUS NOT = '0000' *if all records done

 EXHIBIT IDMS-STATUS * yes-finish stats

 GOTO done. *

 ADD '1' TO COUNTIN OF umtcxfr. *up record count

 PRINT umtcxfr. *print record

 DUMP umtcxfr. *dump record

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *get next

 GOTO loop. *loop until done

done FINISH. *wrap up with stats

 EXHIBIT ' '. *

 EXHIBIT '---total records---' *

 EXHIBIT COUNTIN OF umtcxfr. *

 GOTO eoj. *shutdown
DESCRIPTION
Sample sweeps and record prints those found.

INPUTS

IDMS database records found in area umtcxfr.

OUTPUTS

Prints and dumps of records found.

PROCESS STEPS
Read each record based on an area sweep.

For each record, print and dump it.

Display final statistics.

Sample 74 IDMS ADS/O LOAD SIZE, MAP DATE AND GEN DATE PRINT
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//STEPLIB DD DSN=company.EAGLE.loadlib,disp=shr

// DD DSN=company.primary.idms.loadlib,DISP=SHR

// DD DSN=SYS2.ID100CD.IDMS.LOADLIB,DISP=SHR

//SYSJRNL DD DUMMY

//SYSCTL DD DSN=SYS2.ID100CD.IDMS.SYSCTLT,DISP=SHR

//SYSOUD DD SYSOUT=*

//SYSDBOUT DD SYSOUT=*

//SYSIN DD *

* ADS/O GEN AND MAP DATE PRINT *

headarea DEFAREA SIZE=1000 *memory work space

textarea DEFAREA SIZE=6000 *memory work space

outarea DEFAREA SIZE=80 *memory work space

rc1work DEFINES (F=headarea,P=1,L=100) *

pgmname DEFINES (F=headarea,P=1,L=8) *first 8 used for pgmname

loadsze DEFINES (F=headarea,P=17,L=4,T=X) *load module size

gendte1 DEFINES (F=headarea,P=21,L=8) *gen date of module

rc2work DEFINES (F=textarea,P=1,L=100) *load text

fdbname DEFINES (F=textarea,P=1,L=3) *dbname

mapname DEFINES (F=textarea,P=29,L=8) *map name

scname DEFINES (F=textarea,P=53,L=53) *schema name

ssname DEFINES (F=textarea,P=61,L=8) *subschema name

gendte DEFINES (F=textarea,P=13,L=8) *gendate of map

mapdte DEFINES (F=textarea,P=37,L=8) *map gen date

rc4work DEFINES (F=outarea,P=1,L=100) *output print line

progout DEFINES (F=outarea,P=1,L=8) *pgmname

genout DEFINES (F=outarea,P=10,L=8) *gen date

mapout DEFINES (F=outarea,P=20,L=8) *map name

mdteout DEFINES (F=outarea,P=30,L=8) *map date

loadout DEFINES (F=outarea,P=40,L=10) *load size

scout DEFINES (F=outarea,P=52,L=8) *schema name

ssout DEFINES (F=outarea,P=62,L=8) *subschema name

devout DEFINES (F=outarea,P=72,L=8) *dictionary out

db1name DEFINES 'dev5dict ' *16 byte dict name

ss1name DEFINES 'idmsnwka ' *16 byte subschema name

rc1name DEFINES 'loadhdr-156 ' *record name

rc2name DEFINES 'loadtext-157 ' *text record name

ar1name DEFINES 'dddclod ' *record area

set1name DEFINES 'loadhdr-loadtext' *path name

start BIND RUN-UNIT FOR ss1name DBNAME db1name.

 BIND rc1name TO rc1work. *set work to receive

 BIND rc2name TO rc2work. *

 READY ar1name. *ready retrieval

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *get first module

 MOVE ' ' TO rc4work. *clear output area

pgmloop IF IDMS-STATUS NOT = '0000' *if all modules done

 EXHIBIT IDMS-STATUS * yes-finish stats

 GOTO done. *

 OBTAIN FIRST rc2name WITHIN set1name. *get load text

 IF IDMS-STATUS NOT = '0000' *if text not found

 GOTO skip. * then skip it

 ADD '1' TO COUNTIN OF headarea. *up module count

 IF fdbname = 'fdb' *if load module

 GOTO fdbhit. * yes-get info

 GOTO fdbless. *handle without load

fdbhit MOVE progname TO progout. *build info

 MOVE gendte TO genout. *

 MOVE mapname TO mapout. *

 MOVE mapdte TO mdteout. *

 MOVE scname TO scout. *

 MOVE ssname TO ssout. *

 CVTCHAR loadsze TO loadout. *

 MOVE db1name TO devout. *

 GOTO out. *

fdbless MOVE progname TO progout. *build info

 MOVE gendte1 TO genout. *

 MOVE ' ' TO mapout. *

 MOVE ' ' TO mdteout. *

 MOVE ' ' TO scout. *

 MOVE ' ' TO ssout. *

 CVTCHAR loadsze TO loadout. *

 MOVE db1name TO devout. *

 GOTO out. *

out PRINT outarea. *print detail line

skip FIND CURRENT rc1name. *

 OBTAIN NEXT rc1name WITHIN AREA ar1name. *get next pgmname

 GOTO pgmloop. *loop until done

done FINISH. *wrap up with stats

 EXHIBIT ' '. *

 EXHIBIT '---total program---' *

 EXHIBIT COUNTIN OF headarea. *

 GOTO eoj. *shutdown
DESCRIPTION
Purpose of the sample is to list the ADS/O load modules with

relevant statistics. Often production and development libraries get

out of sync. By running this sample and printing or outputing the

results to disk, compares of various dictionaries can be done.

INPUTS

IDMS load found on the data dictionary dev5dict.

OUTPUTS

Prints of load stat including dates, load size, and subschema names.

PROCESS STEPS
Read each module name found.

For each module name, locate a possible load text.

Build a statistics work line for printing or extracting.
Sample 75 DB2 TABLE EXTRACT AND PRINT
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//extract DD DSN=test.lsmttem.extract,DISP=(NEW,CATLG),

// DCB=(LRECL=60,RECFM=FB,BLKSIZE=6000),

// UNIT=DISK,SPACE=(CYL,(5,1),RLSE)

//SYSIN DD *

* print and dump out all rows *

lsmttem DEFAREA SIZE=60 *memory work space

row1work DEFINES (F=lsmttem,P=1,L=60) *full work size

start DB2-CONNECT SYSTEM=DB2T. *connect to db2

 EXEC SQL DECLARE cur1 CURSOR FOR

 SELECT * FROM db2.lsmttem END-EXEC. *declare cursor

 EXEC SQL OPEN cur1 END-EXEC. *open cursor

loop EXEC SQL FETCH cur1

 INTO :row1work END-EXEC. *read row

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT SQLCODE * yes-display

 GOTO done. * -exit

 ADD '1' TO COUNTIN OF lsmttem. *manually up counts

 PRINT lsmttem. *print record

 WRITE extract FROM lsmttem. *output extract

 GOTO loop. *loop for more

done EXEC SQL CLOSE cur1 END-EXEC. *close cursor

 DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total rows---'. *display counts

 EXHIBIT COUNTIN OF lsmttem. *

 GOTO EOJ. *shutdown
DESCRIPTION:
Sample uses a cursor selecting all elements without a WHERE clause to limit the range. All elements will be stacked side by side starting in position 1 of the rc1work. Should the elements overflow the work size, Eagle88 will issue a message stating how much more it needs.

Manual counts may be kept in the countin, out, del internal fields. The print reports will display these counts when issued.

You may reevaluate a DECLARE statement by having the process logic pass over it. This is different from COBOL where the declare is static. Using Eagle88, the declare is rebuilt when executed under dynam​ic plan preperation. The execution of the open statement and then the first fetch causes the the cursor to actually be opened and read. The Eagle88 waits for the first fetch to actually open so it knows where to place the received elements.

Fetches into must be in a working storage located host variable not a moving record buffer. This is the same retriction COBOL has where host variable may not be in the FD area or linkage without possible problems. This is because the DB2 software statically identifies receiving field position at the time of open. Record reads in an FD, for instance, move the element references in the i/o buffer. Eventually you will get a S0C4 as your unpredictable, predictable result.

INPUTS

DB2 database table lsmttem.
OUTPUTS

Prints and an output extract file.
PROCESS STEPS
Read each row name found.

For each row, print it and output an extract.

Loop until done.

Sample 76 DB2 EXTRACT AND DELETE SELECTED ROWS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//list DD DSN=test.remove.list,DISP=SHR

//extract DD DSN=test.lsmttem.extract,DISP=(NEW,CATLG),

// DCB=(LRECL=60,RECFM=FB,BLKSIZE=6000),

// UNIT=DISK,SPACE=(CYL,(5,1),RLSE)

//SYSIN DD *

* print and dump out all rows *

lsmttem DEFAREA SIZE=60 *memory work space

row1work DEFINES (F=lsmttem,P=1,L=60) *full work size

teamid DEFINES (F=lsmttem,P=1,L=7) *team id

teamname DEFINES (F=lsmttem,P=8,L=30) *name field

origin DEFINES (F=lsmttem,P=38,L=2) *data origin code

removeid DEFINES (F=list,P=1,L=7) *id to drop

start DB2-CONNECT SYSTEM=DB2T. *connect to db2

loop READ list. *read next id

 MOVE removeid TO teamid. *set up select

 EXEC SQL

 SELECT team_id, team_name, team_origin

 INTO :teamid, :teamname, :origin

 FROM db2.lsmttem

 WHERE team_id = :teamid

 AND team_origin = 'rt' END-EXEC.

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT 'id not found' * yes-issue message

 EXHIBIT listid * -display id

 EXHIBIT SQLCODE * -display code

 GOTO loop. * -get next id

 ADD '1' TO COUNTIN OF lsmttem. *manually up counts

 PRINT lsmttem. *print record

 WRITE extract FROM lsmttem. *output extract

 EXEC SQL DELETE FROM db2.lsmttem

 WHERE team_id = :teamid END-EXEC.

 IF SQLCODE NOT = '0' *if delete failed

 EXHIBIT 'delete failed' * yes-issue message

 EXHIBIT removeid * -display id

 EXHIBIT SQLCODE. * -display code

 GOTO loop. *get next on list

EPILOGUE DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total rows---'. *display counts

 EXHIBIT COUNTIN OF lsmttem. *

 GOTO EOJ. *shutdown
DESCRIPTION
The purpose of sample is to demonstrate how you can read in a list

and process SQL based on this elements.

INPUTS

DB2 database table lsmttem.

OUTPUTS

Prints and an output extract file.

PROCESS STEPS
Read id to delete.

For each row, print it, output an audit trail extract, and delete it.

Loop until done.
Sample 72 DB2 EXTRACT, UPDATE, AND COMPARE ROWS

//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//list DD DSN=test.update.list,DISP=SHR

//extract DD DSN=test.lsmttem.extract,DISP=(NEW,CATLG),

// DCB=(LRECL=60,RECFM=FB,BLKSIZE=6000),

// UNIT=DISK,SPACE=(CYL,(5,1),RLSE)

//SYSIN DD *

* print and dump out all rows *

lsmttem DEFAREA SIZE=60 *memory work space

row1work DEFINES (F=lsmttem,P=1,L=60) *full work size

teamid DEFINES (F=lsmttem,P=1,L=7) *team id

teamname DEFINES (F=lsmttem,P=8,L=30) *name field

ordcount DEFINES (F=lsmttem,P=38,L=8,T=P) *order count

updateid DEFINES (F=list,P=1,L=7) *id to update

updtecnt DEFINES (F=list,P=10,L=15,T=C) *new count to set

lsmttemi DEFAREA SIZE=60 *memory work space

row2work DEFINES (F=lsmttemi,P=1,L=60) *full work size

start DB2-CONNECT SYSTEM=DB2T. *connect to db2

loop READ list. *read next id

 MOVE updateid TO teamid. *set up select

 EXEC SQL

 SELECT team_id, team_name, team_order_count

 INTO :teamid, :teamname, :ordcount

 FROM db2.lsmttem

 WHERE team_id = :teamid END-EXEC.

 IF SQLCODE NOT = '0' *if read failed

 EXHIBIT 'id not found' * yes-issue message

 EXHIBIT listid * -display id

 EXHIBIT SQLCODE * -display code

 GOTO loop. * -get next id

 ADD '1' TO COUNTIN OF lsmttem. *up counts

 MOVE COUNTIN OF lsmttem TO COUNTIN OF lsmttemi.

 MOVE row1work TO row2work. *hold initial row

 WRITE extract FROM lsmttem. *output extract

 CVTDEC updtecnt TO ordcount. *reset numeric field

 COMPARE lsmttemi TO lsmttem. *compare before/after

 EXEC SQL UPDATE db2.lsmttem

 SET team_order_count = :ordcount,

 last_updated = CURRENT TIMESTAMP

 WHERE team_id = :teamid END-EXEC.

 IF SQLCODE NOT = '0' *if delete failed

 EXHIBIT 'update failed' * yes-issue message

 EXHIBIT updateid * -display id

 EXHIBIT SQLCODE. * -display code

 EXEC SQL ROLLBACK END-EXEC. * -rollback

 GOTO loop. *get next on list

EPILOGUE DB2-DISCONNECT. *terminate DBMS

 EXHIBIT '---total rows---'. *display counts

 EXHIBIT COUNTIN OF lsmttem. *

 GOTO EOJ. *shutdown

DESCRIPTION:
The purpose of sample is to demonstrate how to zap rows based on

a control file driver. All rows are extracted for audit trail needs and

compare report is issued on the change before and after the zap.

Should an update error occur, the entire update is rollbacked.

INPUTS:

DB2 database table lsmttem.

OUTPUTS:

Compare before/after rows; Audit trail extract file.

PROCESS STEPS:
Read id to delete.

For each row, print it, output an audit trail extract, and delete it.
Sample 78 IMS DATA BASE PRINT AND DUMP
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step01 EXEC EAGLE88IMS,PSB='psbname',REGION=6M

//userdb1 DD DSN=test1.database,DISP=SHR

//userdb2 DD DSN=test2.database,DISP=SHR

//userdb3 DD DSN=test3.database,DISP=SHR

//seqfile DD DSN=test.seq.file,DISP=(NEW,CATLG),

// DCB=(LRECL=500,RECFM=FB,BLKSIZE=6000),

// SPACE=(CYL,(5,5),RLSE),UNIT=SYSDA

//SYSIN DD *

**

* dli data base print and dump

**

 ENTRY DLITCBL USING pcb1.

insarea DEFAREA SIZE=500 *memory work

pcb1 DLILINK (N=pcb1,P=1,L=50) *pcb area 1

pcb1rc DLILINK (N=pcb1,P=11,L=2) *

insrec DEFINES (F=insarea,P=1,L=500) *segment build area

gn DEFINES 'GN ' *access get next

ssa1 DEFINES 'INSURED ' *segment name

total DEFINES P'0000000' *

good DEFINES ' ' *

loop CALL CBLTDLI USING gn -

 pcb1 -

 insrec -

 ssa1. *get segment

 IF pcb1rc NOT EQUAL good *if end of segment

 EXHIBIT total * yes-shutdown

 EXHIBIT pcb1

 GOTO EOJ.

 ADD '1' TO COUNTIN OF insarea. *up record count

 IF date = '19891209' *if correct date

 DUMP insarea * yes-dump segment

 WRITE seqfile FROM insarea. * -output an extract

 GOTO loop. *do until done

//

DESCRIPTION
This sample dumps and unloads IMS database segments under the

name of INSURED. Only segments with a date of 1989-12-09 will

be chosen.

INPUTS

Data bases for insured segments.

OUTPUTS

Sequential file of extracts and dump report R05.type.

PROCESS STEPS
Read segments via DLI call.

Loop until done.

Output fixed record size.
Sample 79 DB2 PARTIAL TABLE DELETE AND RELOAD
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//list DD DSN=test.update.list,DISP=SHR

//tablein DD DSN=lmstest.c320.data,DISP=SHR

//SYSIN DD *

* Eagle88 process will reload *

* the c320 description*

* codes from a dataset*

rec DEFINES (F=tablein,P=1,L=200)

id DEFINES (F=tablein,P=01,L=4)

key DEFINES (F=tablein,P=05,L=10)

result DEFINES (F=tablein,P=15,L=80)

 DB2-CONNECT SYSTEM=db2t.

 EXEC SQL lock table in share mode END-EXEC.

 EXEC SQL DELETE FROM db2.lmsttbt

 WHERE table_id = 'c320'

 END-EXEC.

 EXHIBIT '--total deleted--'

 EXHIBIT SQLCOUNT

LOOP READ tablein

 PRINT tablein.

 EXEC SQL INSERT INTO db2.lmsttbt

 (table_id,

 table_key,

 table_result,

 online_timestamp)

 VALUES (:id, :key, :result, CURRENT TIMESTAMP)

 END-EXEC.

 IF SQLCODE NOT = '0'

 EXHIBIT 'error....'

 EXHIBIT key

 EXHIBIT SQLCODE

 EXEC SQL ROLLBACK END-EXEC

 DB2-DISCONNECT

 GOTO EOJ.

 GOTO LOOP.

EPILOGUE EXEC SQL COMMIT END-EXEC.

 DB2-DISCONNECT.

 GOTO EOJ.

DESCRIPTION:
Reload a DB2 control table containing process codes and

descriptions.

INPUTS:

DB2 database table lsmttbt.

OUTPUTS:

Old rows deleted, new ones added.

PROCESS STEPS:
Lock table space in share mode (optional)

Delete old codes and descriptions.

Print the number of rows deleted.

Read each record to load.

Insert the new row.

Loop until done.
Sample 80 CONVERT IDMS RECORDS TO DB2 ROWS
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//STEPLIB DD DSN=company.EAGLE.loadlib,disp=shr

// DD DSN=company.primary.idms.loadlib,DISP=SHR

// DD DSN=SYS2.ID100CD.IDMS.LOADLIB,DISP=SHR

//SYSJRNL DD DUMMY

//SYSCTL DD DSN=SYS2.ID100CD.IDMS.SYSCTLT,DISP=SHR

//SYSOUD DD SYSOUT=*

//SYSDBOUT DD SYSOUT=*

//SYSIN DD *

* convert idms records to db2 table *

* note: numerics automatically translate *

* from character to packed. *

umtcxfr DEFAREA SIZE=220 *memory work space

rc1work DEFINES (F=umtcxfr,P=1,L=220) *

db1name DEFINES 'dev5dict ' *16 byte dict name

ss1name DEFINES 'intssc01 ' *16 byte subschema name

rc1name DEFINES 'umtcxfr ' *record name

ar1name DEFINES 'pend-area ' *record area

policy DEFINES (F=umtcxfr,P=01,L=9)

date DEFINES (F=umtcxfr,P=10,L=10)

premium DEFINES (F=umtcxfr,P=50,L=8,T=P,D=2)

type DEFINES (F=umtcxfr,P=139,L=2)

paymode DEFINES (F=umtcxfr,P=152,L=1)

newtype DEFINES (F=WORKAREA,P=1,L=2) *scratch pad work

paycnt DEFINES (F=WORKAREA,P=5,L=4,T=X)

start BIND RUN-UNIT FOR ss1name DBNAME db1name.

 BIND rc1name TO rc1work. *set work to receive

 READY ar1name. *ready retrieval

 DB2-CONNECT SYSTEM=db2t.

 EXEC SQL LOCK TABLE IN SHARE MODE END-EXEC.

 OBTAIN FIRST rc1name WITHIN AREA ar1name. *get first record

loop IF IDMS-STATUS NOT = '0000' *if all records done

 EXHIBIT IDMS-STATUS * yes-finish stats

 GOTO done. *

 ADD '1' TO COUNTIN OF umtcxfr. *up record count

 CVTBIN '01' TO paycnt *default annual pay

 MOVE 'AU' TO newtype. *default auto policy

 IF type = '54' *if homeowner policy

 IF paymode = 'M' * and monthly payment

 CVTBIN '12' TO paycnt * set db2's pay count

 MOVE 'HO' TO newtype. * set new policy type

 DUMP umtcxfr. *dump record

EXEC SQL insert into db2.polprems

 (policy_number,

 policy_inception_date,

 net_single_premium,

 payment_count,

 policy_type,

 online_timestamp)

 values (:policy, :date, :premium,

 :paycnt, :newtype, current timestamp)

 END-EXEC.

 IF SQLCODE NOT = '0'

 EXHIBIT 'insert error on policy number....'

 EXHIBIT policy

 EXHIBIT SQLCODE

 EXEC SQL ROLLBACK END-EXEC

 GOTO done.

 OBTAIN NEXT rc1name WITHIN AREA ar1name.

 GOTO loop. *loop until done

done FINISH. *disconnect idms from task

 EXEC SQL COMMIT END-EXEC. *commit db2 and release lock

 DB2-DISCONNECT. *disconnect db2 from task

 GOTO eoj. *shutdown

DESCRIPTION:
Load a DB2 table using IDMS as the input source. Connection is

made to both environments at the same time. Please consult with

your DBA's for possible data center restrictions or conflicts.

Should you have trouble, separate the task into two steps, one for

the IDMS unload and another for the DB2 conversion.

INPUTS:

IDMS database area umtcxfr.

OUTPUTS:

DB2 row with converted fields.

PROCESS STEPS:
Init IDMS and DB2 connections.

Read each idms record to load.

Convert any fields needed. Please note, DB2 may have a different

numeric format on it's DCL-gen. In most cases, Eagle88 will

automatically convert them without assistance. The decimal places

(D=2 command) is the exeception.

Insert the new row.

Loop until done.

Disconnect from both IDMS and DB2.
Sample 81 SYNC PATCH FILE TO MASS UPDATE DB2 ROWS
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step1 EXEC EAGLE88

//quotes DD DSN=nyse.vsam.security.quotes,DISP=SHR

//zaplist DD DSN=oxxtest.cusips.to.zap,DISP=SHR

//SYSIN DD *

**

* Eagle88 - process will zap the security row based on a control

* list containg the cusip id. The zap list is synchronized to a *

* vsam file for price values. Files are in ascending order. *

**

qtekey DEFINES (F=quotes,P=5,L=9) *cusip id

qteprice DEFINES (F=quotes,P=26,L=15,T=C) *vsam zone decimal

zapkey DEFINES (F=zaplist,P=1,L=9) *zap cusip id

oxxsecr DEFAREA SIZE=100 *scratch pad area

cusip DEFINES (F=oxxsecr,P=001,L=9) *table cusip

quote DEFINES (F=oxxsecr,P=010,L=8,T=P,D=7) *packed decimal

 DB2-CONNECT SYSTEM=prod. *

loop SYNC zapkey, qtekey. *coordinated read

 IF zapkey = qtekey *if matching price

 GOTO process. * to quote, process

 GOTO loop. * no-loop until found

process MOVE zapcusip to cusip *set up for select

 EXEC SQL

 SELECT cusip, close_quote

 INTO :cusip, :quote

 FROM prod.oxxsecr

 WHERE cusip = :cusip END-EXEC.

 IF SQLCODE NOT = '0' *if not found

 GOTO loop. * skip this row

 MOVE qteprice TO quote. *set value for shift

 EXEC SQL

 UPDATE prod.oxxserc

 SET cusip = :cusip, close_quote = :quote

 WHERE cusip = :cusip END-EXEC.

 DUMP oxxsecr. *audit trail of zaps

 GOTO loop. *go for more id

EPILOGUE EXHIBIT 'finishing oxxsecr correction....'

 EXHIBIT 'rolling back for test' *debug test run

 EXEC SQL ROLLBACK END-EXEC. *

 DB2-DISCONNECT. *

 GOTO EOJ. *SHUTDOWN
DESCRIPTION:
The DB2 table will be updated from the VSAM master file, but for

only selected keys. These keys were created from an error report.

INPUTS:

VSAM prices master file and a control list synchronized

OUTPUTS:

DB2 row with update prices.

PROCESS STEPS:
Sync VSAM prices to control list.

Read the DB2 row for every entry on the control list file.

Convert the numeric field.

Update the row.

Loop until done.

Disconnect from DB2.
Sample 82 PATCH CA-DATACOM DATA BASE AND ISSUE
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step1 EXEC EAGLE88DB,URT=D1M890U1

//SYSIN DD *

* working storage area *

litdlr DEFINES '0005594' <============ TA dealer nbr to select

litbrn DEFINES '000 ' <============ TA branch id to zap

com1 DEFAREA SIZE=400

userinf1 DEFINES (F=com1,P=001,L=32) ***Datacom request block

request1 DEFINES (F=com1,P=100,L=203)

reqcmd1 DEFINES (F=com1,P=100,L=005)

tblname1 DEFINES (F=com1,P=105,L=003)

keyname1 DEFINES (F=com1,P=108,L=005)

rc1 DEFINES (F=com1,P=113,L=002)

f11 DEFINES (F=com1,P=115,L=001)

dbid1 DEFINES (F=com1,P=116,L=002,T=X)

tblid1 DEFINES (F=com1,P=118,L=002,T=X)

recid1 DEFINES (F=com1,P=120,L=005)

f21 DEFINES (F=com1,P=125,L=051)

*

key1 DEFINES (F=com1,P=176,L=027) *key area

kydlr DEFINES (F=com1,P=176,L=007)

kybrn DEFINES (F=com1,P=183,L=009)

eml DEFAREA SIZE=60

elmlist1 DEFINES (F=eml,P=001,L=012) *element list

dealer DEFAREA SIZE=309

drec DEFINES (F=dealer,P=001,L=309) *returned dlr record

dkey DEFINES (F=dealer,P=001,L=010) *dealer file key

dxyzkey DEFINES (F=dealer,P=004,L=007) *dlr key

dnamKY DEFINES (F=dealer,P=011,L=010) *nam key

dtadlr DEFINES (F=dealer,P=021,L=007) *ta dealer key

before DEFAREA SIZE=162

brec DEFINES (F=before,P=001,L=162) *before compare area

after DEFAREA SIZE=162

arec DEFINES (F=after,P=001,L=162) *after compare area

branch DEFAREA SIZE=162

rec DEFINES (F=branch,P=001,L=162) *returned brn record

bkey DEFINES (F=branch,P=001,L=010) *branch file key

bco DEFINES (F=branch,P=001,L=003) *company key

bbrnky DEFINES (F=branch,P=004,L=007) *xyz brn key

bdlrky DEFINES (F=branch,P=011,L=007) *xyz dlr key

bnamky DEFINES (F=branch,P=018,L=010) *xyz nam key

btabrn DEFINES (F=branch,P=028,L=009) *ta branch key

bstatus DEFINES (F=branch,P=095,L=001) *branch status

boperid DEFINES (F=branch,P=111,L=003) *operator id

bmaintdt DEFINES (F=branch,P=122,L=008) *maint date

bmainttm DEFINES (F=branch,P=130,L=006) *maint time

* Read the dealer by TA-DEALER-NO then *

* Read the branch by TA-BRANCH-NO and XYZ-DLR *

BEGIN PERFORM GETDLR *Get the dealer key

INIT MOVE 'BRN' TO tblname1.

 MOVE 'BRNK1' TO keyname1.

 CVTBIN '74' TO dbid1. *Dbase area

 MOVE 'BRNRE' TO elmlist1.

 MOVE dxyzkey TO kydlr. *xyz dealer key

 MOVE ' ' TO kybrn. *TA branch no

** ***Position record

START MOVE 'GSETL' TO reqcmd1.

 CALL DBNTRY USING userinf1, -

 request1, -

 rec, -

 elmlist1.

** ***Read next record

LOOP MOVE 'GETIT' TO reqcmd1.

 CALL DBNTRY USING userinf1, -

 request1, -

 rec, -

 elmlist1.

 IF rc1 NOT EQUAL ' ' *If done

 EXHIBIT ' ' * display msg

 EXHIBIT 'TASK FINISHED' * and shutdown

 EXHIBIT rc1 *

 GOTO EOJ. *

 IF bdlrky NOT EQUAL dxyzkey *If end of dealer

 EXHIBIT 'END OF PROCESS' * display msg

 GOTO EOJ. * shutdown

 IF btabrn = litbrn *If tA branch found

 ADD '1' TO COUNTIN OF before * up rec count

 ADD '1' TO COUNTIN OF after * up rec count

 MOVE rec TO brec * save before image

 MOVE '0' TO bstatus * reset status code

 MOVE 'D1M' TO boperid * reset operid

 MOVE '19911030' TO bmaintdt * reset maint date

 MOVE '000000' TO bmainttm * reset maint date

 PERFORM BRNUPD * perform upd brn

 MOVE rec TO arec * save after image

 COMPARE before TO after. * issue compare rpt

 GOTO LOOP.

* Update the branch with new data *

BRNUPD MOVE 'UPDAT' TO reqcmd1.

CALL DBNTRY USING
userinf1, -

request1, -

rec, -

elmlist1.

 IF rc1 NOT EQUAL ' ' *If done

 EXHIBIT ' ' * display msg

 EXHIBIT 'UPDATE FAILED' * and shutdown

 EXHIBIT 'TASK FINISHED' *

 EXHIBIT rc1 *

 GOTO EOJ. *

 RETURN.

* Get the dealer xyz key for the branch read *

GETDLR MOVE 'DLR' TO tblname1.

 MOVE 'DLRK1' TO keyname1.

 CVTBIN '74' TO dbid1. *date base area

 MOVE 'DLRRE' TO elmlist1.

 MOVE litdlr TO kydlr. *TA dealer no

** ***position record

 MOVE 'GSETL' TO reqcmd1.

 CALL DBNTRY USING userinf1, -

 request1, -

 drec, -

 elmlist1.

** ***read next record

 MOVE 'GETIT' TO reqcmd1.

 CALL DBNTRY USING userinf1, -

 request1, -

 drec, -

 elmlist1.

 IF rc1 NOT EQUAL ' ' *If done

 EXHIBIT ' ' * display msg

 EXHIBIT 'TASK FINISHED' * and shutdown

 EXHIBIT 'dealer NOT FOUND' *

 EXHIBIT rc1 *

 GOTO EOJ. *

 IF dtadlr NOT EQUAL litdlr *If end of dealer

 EXHIBIT 'dealer NOT FOUND' * display msg

 GOTO EOJ. * shutdown

 ADD '1' TO COUNTIN OF dealer. *Up rec count

 RETURN.
DESCRIPTION:
The CA-DATACOM database record will be updated and a before

and after data compare will be made to audit the changes made.

Keys are selected and read.
An image is held in a work area

before it is modified and updated.
The compare request then

prints the audit.

INPUTS:

CA-DATACOM files as defined in the URT. URT's can be

borrowed from normal application programs. Eagle88

access will be limited the URT's limits.

OUTPUTS:

Modified database record.

PROCESS STEPS:
Database is read using NATIVE mode.

The branch key is stored in the dealer record.

Get the Branch record and reset the desired fields.

Update the row.

Compare the before to after records for auditing.

Terminate.
Sample 83 LIST IMS SEGMENTS WITH BAD DATES
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step01 EXEC EAGLE88IMS,PSB='arcsecg#',REGION=6M

//arcsec1 DD DSN=arc.test.sec1,DISP=SHR

//arcsec2 DD DSN=arc.test.sec2,DISP=SHR

//arcseci DD DSN=arc.test.seci,DISP=SHR

//arcsecx DD DSN=arc.test.secx,DISP=SHR

//SYSIN DD *

* Process will select all t-bill securities that *

* have a bad issue/maturity date *

 ENTRY DLITCBL USING pcb1.

pcb1 DLILINK (N=pcb1,P=1,L=50)

pcb1RC DLILINK (N=pcb1,P=11,L=2)

pcb1NAM DLILINK (N=pcb1,P=21,L=8)

*

sec DEFAREA SIZE=200

sec2 DEFAREA SIZE=100

wrk1 DEFAREA SIZE=100

*

sec1 DEFINES (F=sec,P=1,L=200) *

sec1sec DEFINES (F=sec,P=01,L=10,T=C) *

sec1cat DEFINES (F=sec,P=11,L=1,T=C) *Looking for "K"

sec1typ DEFINES (F=sec,P=14,L=2,T=C) *Looking for "01"

sec1mat DEFINES (F=sec,P=50,L=5,T=P) *Maturity date

sec2 DEFINES (F=sec2,P=1,L=100) *

sec2iss DEFINES (F=sec2,P=41,L=4,T=P) *Issue date

* *

ssa1 DEFINES (F=wrk1,P=1,L=100) *

ssa1cmd DEFINES (F=wrk1,P=18,L=02,T=C) *SSA access cmd

ssa1sec DEFINES (F=wrk1,P=20,L=10,T=C) *Set up the security cusip nbr

wkdate DEFINES (F=wrk1,P=50,L=5,T=P) *Work maturity date

good DEFINES ' '

gn DEFINES 'GN '

gu DEFINES 'GU '

ssa0 DEFINES 'sec '

ssa1lit DEFINES 'sec (KEY >0000000000)'

ssa2 DEFINES 'sec2 '

total DEFINES P'+0000000'

swfound DEFINES 'N'

* *

begin MOVE ssa1lit TO ssa1. *Init ssa1 literal

nextent CALL CBLTDLI USING gn, pcb1, sec1, ssa1. *Get next sec1

 MOVE sec1sec TO ssa1sec. *Init ssa1 literal

next010 IF pcb1rc NOT EQUAL good *If not ok

 EXHIBIT 'SEC1 FINISHED' * terminate

 EXHIBIT pcb1rc *

 EXHIBIT total *

 GOTO EOJ. *

 MOVE 'N' TO swfound. *Reset flag

 ADD '1' TO COUNTIN OF sec. *Up count

 IF sec1cat = 'K' *Catagory K and

 IF sec1typ = '01' * pricetype = 01

 MOVE 'Y' TO swfound * set found ind

 PERFORM getsec2. * get issue date

 IF swfound = 'Y' *IF sec1&sec2 found

 IF sec1mat NUMERIC * and valid numeric

 IF sec2iss NUMERIC *

 MOVE sec1mat TO wkdate * mat - issue date

 SUBTRACT sec2iss FROM wkdate * must be less than

 IF wkdate > '19010000' * a year

 PERFORM rpterr. * report the error

 GOTO nextent. *Get next list ***

* Test to see if the security exists *

getsec2 MOVE '=' TO ssa1cmd.

 CALL CBLTDLI USING gn, pcb1, sec2, ssa1, ssa2.

 MOVE '>' TO ssa1cmd.

 IF pcb1rc NOT EQUAL good *If not ok

 MOVE 'N' TO swfound * set not found

 RETURN. *

 ADD '1' TO COUNTIN OF sec2. *Up count

 MOVE 'Y' TO swfound. *

 RETURN. *

* Report the security in a report format *

rpterr EXHIBIT sec1sec. *

 EXHIBIT sec2iss. *

 EXHIBIT sec1mat. *

 ADD '1' TO total. *

 RETURN. *
DESCRIPTION:
The IMS database segments will be searched for any security issues

of a particular
classification to see if it's issue/maturity dates are

bad.

INPUTS:

IMS database files. Eagle88 access is limited by the PSB

limits.

OUTPUTS:

Exhibit listing.

PROCESS STEPS:
Database is read using normal DLI calls.

Every security root is examined for dates in the dependent

segment.
Sample 84 IMS TO DB2 DATA BASE TRANSFER
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step01 EXEC EAGLE88IMS,PSB='psbname',REGION=6M

//userdb1 DD DSN=test1.database,DISP=SHR

//userdb2 DD DSN=test2.database,DISP=SHR

//userdb3 DD DSN=test3.database,DISP=SHR

//SYSIN DD *

**

* dli data base print and dump

**

 ENTRY DLITCBL USING pcb1.

insarea DEFAREA SIZE=500 *memory work

pcb1 DLILINK (N=pcb1,P=1,L=50) *pcb area 1

pcb1rc DLILINK (N=pcb1,P=11,L=2) *

insrec DEFINES (F=insarea,P=1,L=500) *segment build area

id DEFINES (F=insarea,P=01,L=4) *

key DEFINES (F=insarea,P=05,L=10) *

result DEFINES (F=insarea,P=15,L=80) *

gn DEFINES 'GN ' *access get next

ssa1 DEFINES 'INSURED ' *segment name

total DEFINES P'0000000' *

good DEFINES ' ' *

 DB2-CONNECT SYSTEM=db2t. *access DB2 environment

loop CALL CBLTDLI USING gn pcb1 insrec ssa1. *get IMS segment

 IF pcb1rc NOT EQUAL good *if end of segment

 EXHIBIT total * yes-shutdown

 EXHIBIT pcb1

 GOTO EPILOGUE.

 ADD '1' TO COUNTIN OF insarea. *up record count

 IF date = '19891209' *if correct date

 DUMP insarea * yes-dump segment

 EXEC SQL INSERT IN TO db2.lmsttbt

 (table_id, table_key, table_result, online_timestamp)

 VALUES (:id, :key, :result, CURRENT TIMESTAMP) END-EXEC

 IF SQLCODE NOT = '0'

 EXHIBIT 'insert error....'

 EXHIBIT key

 EXHIBIT SQLCODE

 EXEC SQL ROLLBACK END-EXEC

 GOTO EPILOGUE.

 GOTO LOOP.

EPILOGUE DB2-DISCONNECT.

 GOTO EOJ.
DESCRIPTION
This sample dumps and loads IMS database segments under the

name of INSURED to a DB2 table. Only segments with a date of

1989-12-09 will be chosen. Fields can be modified or converted

before inserts.

INPUTS

IMS Data bases for insured segments.

OUTPUTS

DB2 table

PROCESS STEPS:
Begin process under IMS control using EAGLEIMS proc

Read segments via DLI call.

Insert the new row into DB2.

Loop until done.
Sample 85 LOAD CA-DATACOM TO A DB2 DATA BASE
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step1 EXEC EAGLE88DB,URT=D1M890U1

//SYSIN DD *

* working storage area *

litdlr DEFINES '0005594' <============ TA dealer nbr to load

com1 DEFAREA SIZE=400

userinf1 DEFINES (F=com1,P=001,L=32) ***Datacom request block

request1 DEFINES (F=com1,P=100,L=203)

reqcmd1 DEFINES (F=com1,P=100,L=005)

tblname1 DEFINES (F=com1,P=105,L=003)

keyname1 DEFINES (F=com1,P=108,L=005)

rc1 DEFINES (F=com1,P=113,L=002)

f11 DEFINES (F=com1,P=115,L=001)

dbid1 DEFINES (F=com1,P=116,L=002,T=X)

tblid1 DEFINES (F=com1,P=118,L=002,T=X)

recid1 DEFINES (F=com1,P=120,L=005)

f21 DEFINES (F=com1,P=125,L=051)

key1 DEFINES (F=com1,P=176,L=027) *key area

kydlr DEFINES (F=com1,P=176,L=007)

kybrn DEFINES (F=com1,P=183,L=009)

eml DEFAREA SIZE=60

elmlist1 DEFINES (F=eml,P=001,L=012) *element list

dealer DEFAREA SIZE=309

drec DEFINES (F=dealer,P=001,L=309) *returned dlr record

dkey DEFINES (F=dealer,P=001,L=010) *dealer file key

dxyzkey DEFINES (F=dealer,P=004,L=007) *dlr key

dnamky DEFINES (F=dealer,P=011,L=010) *nam key

dtadlr DEFINES (F=dealer,P=021,L=007) *ta dealer key

* Get the dealer xyz key to load into DB2 *

 DB2-CONNECT SYSTEM=db2t. *access DB2 environment

GETDLR MOVE 'DLR' TO tblname1.

 MOVE 'DLRK1' TO keyname1.

 CVTBIN '74' TO dbid1. *date base area

 MOVE 'DLRRE' TO elmlist1.

 MOVE litdlr TO kydlr. *TA dealer no

 MOVE 'GSETL' TO reqcmd1. *get record

 CALL DBNTRY USING userinf1, request1, drec, elmlist1.

 MOVE 'GETIT' TO reqcmd1.

 CALL DBNTRY USING userinf1, request1, drec, elmlist1.

 IF rc1 NOT EQUAL ' ' *If done

 EXHIBIT 'dealer NOT FOUND' * shutdown

 EXHIBIT rc1 *

 GOTO EPILOGIE. *

 IF dtadlr NOT EQUAL litdlr *If end of dealer

 EXHIBIT 'dealer NOT FOUND' * display msg

 GOTO EPILOGUE. * shutdown

 EXEC SQL INSERT IN TO db2.lmsttbt

 (dlr_key, name_key, ta_dlr_nbr, online_timestamp)

 VALUES (:dxyzkey, :dnamky, :dtadlr, CURRENT TIMESTAMP)

 END-EXEC

 IF SQLCODE NOT = '0'

 EXHIBIT 'insert error....'

 EXHIBIT SQLCODE

 GOTO EPILOGUE.

EPILOGUE DB2-DISCONNECT.

 GOTO EOJ.
DESCRIPTION:
The CA-DATACOM database record will be read and loaded to a

DB2 table.

INPUTS:

CA-DATACOM files as defined in the URT.

OUTPUTS:

Modified DB2 database record.

PROCESS STEPS:
Database is read using NATIVE mode.

Insert using DB2 SQL commands.

Terminate.
Sample 86 DYNAMIC FILE CREATION FROM A LIST
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step1 EXEC EAGLE88

//LIST DD *

ACCT1

ACCT2

ACCT3

ACCT4

//DATA DD *

DATA REC1

DATA REC2

DATA REC3

//SYSIN DD *

* INPUT RECORDS *

ACCTNUM DEFINES (F=LIST,P=1,L=5)

DATAREC DEFINES (F=DATA,P=1,L=80)

* DYNALLOC REQUEST BLOCK FOR INFO MESSAGES *

WORK1 DEFAREA SIZE=300

REQBLOCK DEFINES (F=WORK1,P=1,L=20)

REQBSIZE DEFINES (F=WORK1,P=1,L=1,T=X)

REQBVERB DEFINES (F=WORK1,P=2,L=1,T=X)

REQBFLG1 DEFINES (F=WORK1,P=3,L=2,T=X)

REQBERR DEFINES (F=WORK1,P=5,L=2,T=X)

REQBINFO DEFINES (F=WORK1,P=7,L=2,T=X)

REQBTEXT DEFINES (F=WORK1,P=9,L=4,T=X)

REQBRSRV DEFINES (F=WORK1,P=13,L=4,T=X)

REQBFLG2 DEFINES (F=WORK1,P=17,L=4,T=X)

* DYNALLOC REQUEST TEXT AREA *

TEXT1 DEFINES (F=WORK1,P=101,L=12)

TXT1DATA DEFINES (F=WORK1,P=107,L=6,T=C)

TEXT2 DEFINES (F=WORK1,P=201,L=24)

TXT2DATA DEFINES (F=WORK1,P=207,L=18,T=C)

TXT2ACCT DEFINES (F=WORK1,P=212,L=5,T=C)

TEXT1L DEFINES X'000100010006' *REQUEST DDNAME LEN=6

TEXT2L DEFINES X'000200010012' *REQUEST DATASETNAME LEN=18

TEXT3 DEFINES X'00040001000104' *DISP=(NEW,

TEXT4 DEFINES X'00050001000102' *DISP=(,CATLG

TEXT5 DEFINES X'00060001000104' *DISP=(, ,DELETE)

TEXT6 DEFINES X'001500010004C4C9E2D2' *UNIT=DISK

TEXT7 DEFINES X'00070000' *SPACE=TRACKS

TEXT8 DEFINES X'000A00010003000005' *SPACE PRIMARY 5 TRKS

TEXT9 DEFINES X'0030000100021F40' *BLKSIZE = 8000

TEXTA DEFINES X'0042000100020050' *LRECL = 80

TEXTB DEFINES X'00490001000190' *RECFM=FB = X'10'+'80'

TEXTC DEFINES X'00040001000102' *DISP=(MOD,

TEXTD DEFINES X'00050001000104' *DISP=(,DELETE

TEXTE DEFINES X'00060001000104' *DISP=(, ,DELETE)

* INITIALIZE DYNAMIC REQUEST TEXT *

 MOVE TEXT1L TO TEXT1. *REQUEST DDNAME

 MOVE 'OUTPUT' TO TXT1DATA. *DDNAME=OUTPUT

 MOVE TEXT2L TO TEXT2. *REQUEST DATASETNAME

 MOVE 'TEST.ACCTX.OUTLIST' TO TXT2DATA.

 CVTBIN '20' TO REQBSIZE. *INIT REQUEST BLOCK SIZE

* PROCESS LOOP FOR ACCOUNT LIST *

LOOP1 READ LIST. *READ THE CONTROL LIST

 IF RECORDSW OF LIST = 'Y' *IF DONE, STOP JOB

 GOTO EOJ. *

 MOVE ACCTNUM TO TXT2ACCT *

 EXHIBIT 'BUILDING FILE:' *DISPLAY THE FILE NAME

 EXHIBIT TXT2DATA *

 CVTBIN '1' TO REQBVERB. *REQUEST ALLOC DSNAME "MOD"

** *DELETE THE FILE IF PRESENT

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXTC, TEXTD, -

 TEXTE, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.

 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

 CVTBIN '2' TO REQBVERB. *REQUEST DEALLOCATE DSNAME

** *DELETE THE FILE IF PRESENT

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2.

 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

** *ALLOCATE THE FILE

 CVTBIN '1' TO REQBVERB. *REQUEST ALLOC DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXT3, TEXT4, -

 TEXT5, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.

 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

 DYNOPEN OUTPUT. *OPEN THE DYNAMIC FILE

**

* OUTPUT THE GIVEN FILE *

**

LOOP2 READ DATA. *

 IF RECORDSW OF DATA = 'Y' *

 DYNCLOSE OUTPUT *CLOSE THE DYNAMIC FILE

 CVTBIN '2' TO REQBVERB *REQUEST DEALLOCATE DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2

 RESTART DATA *

 GOTO LOOP1. *

 WRITE OUTPUT FROM DATA. *OUTPUT THE DATA RECORD

 GOTO LOOP2. *
DESCRIPTION:
This run will read a list of account numbers from the list file. For every account read, a

new file is created containing all the records in the detail record file. (Also see the

Command Section DYNALLOC for details on calling text parms.)

INPUTS:
List - contains account ids used to build the file names.

Data - contains the data record samples to write on each file.

OUTPUTS:
Output - a dynamicly build dataset name 'test.xxxxx.outlist'

test.acct1.outlist as a recfm=fb, blk=8000, len=80

test.acct2.outlist

test.acct3.outlist

test.acct4.outlist

PROCESS STEPS:
Read the next account to build a file.

Delete the file name dynamically (mod,delete, delete)

Allocate the file defining the name, unit, and DCB info

Open the file

Write all detail records to the file

Close, and free the dynamic file

Loop for next account to process.

Sample 87 DYNAMIC FILE CREATION FROM TRANSACTIONS
//jobname JOB (12345,12345),'name ',MSGCLASS=X,CLASS=A

//step1 EXEC EAGLE88

//TRANFILE DD *

2466AC247657822C890478902789048907V TRANSACTION 1 WE42483234243T1

2466AC247657822C890478902789048907V TRANSACTION 2 WE42483234243T1

2466AC247657822C890478902789048907V TRANSACTION 3 WE42483234243T1

2466AC456757822C890478902789048907V TRANSACTION 1 WE42483234243T1

2466AC557757822C890478902789048907V TRANSACTION 1 WE42483234243T1

2466AC867857822C890478902789048907V TRANSACTION 1 WE42483234243T1

//SYSIN DD *

* INPUT RECORDS *

ACCTNUM DEFINES (F=TRANFILE,P=5,L=6)

CNTOUT DEFINES P'+0000000' *WORK COUNTER

* DYNALLOC REQUEST BLOCK FOR INFO MESSAGES *

WORK1 DEFAREA SIZE=300

REQBLOCK DEFINES (F=WORK1,P=1,L=20)

REQBSIZE DEFINES (F=WORK1,P=1,L=1,T=X)

REQBVERB DEFINES (F=WORK1,P=2,L=1,T=X)

REQBERR DEFINES (F=WORK1,P=5,L=2,T=X)

REQBINFO DEFINES (F=WORK1,P=7,L=2,T=X)

* DYNALLOC REQUEST TEXT AREA *

TEXT1 DEFINES (F=WORK1,P=101,L=12)

TXT1DATA DEFINES (F=WORK1,P=107,L=6,T=C)

TEXT2 DEFINES (F=WORK1,P=201,L=24)

TXT2DATA DEFINES (F=WORK1,P=207,L=18,T=C)

TXT2ACCT DEFINES (F=WORK1,P=212,L=6,T=C)

TEXT1L DEFINES X'000100010006' *REQUEST DDNAME LEN=6

TEXT2L DEFINES X'000200010012' *REQUEST DATASETNAME LEN=18

TEXT3 DEFINES X'00040001000104' *DISP=(NEW,

TEXT4 DEFINES X'00050001000102' *DISP=(,CATLG

TEXT5 DEFINES X'00060001000104' *DISP=(, ,DELETE)

TEXT6 DEFINES X'001500010004C4C9E2D2' *UNIT=DISK

TEXT7 DEFINES X'00070000' *SPACE=TRACKS

TEXT8 DEFINES X'000A00010003000005' *SPACE PRIMARY 5 TRKS

TEXT9 DEFINES X'0030000100021F40' *BLKSIZE = 8000

TEXTA DEFINES X'0042000100020050' *LRECL = 80

TEXTB DEFINES X'00490001000190' *RECFM=FB = X'10'+'80'

* Eagle88 PROCESS STATEMENTS

 MOVE TEXT1L TO TEXT1. *REQUEST DDNAME

 MOVE 'OUTPUT' TO TXT1DATA. *DDNAME=OUTPUT

 MOVE TEXT2L TO TEXT2. *REQUEST DATASETNAME

 MOVE 'TEST.ACXXXX.TRNOUT' TO TXT2DATA.

 CVTBIN '20' TO REQBSIZE. *INIT REQUEST BLOCK SIZE

 READ TRANFILE. *READ THE CONTROL LIST

LOOP1 MOVE ACCTNUM TO TXT2ACCT *

** *ALLOCATE THE FILE

 CVTBIN '1' TO REQBVERB. *REQUEST ALLOC DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2, TEXT3, TEXT4, -

 TEXT5, TEXT6, TEXT7, TEXT8, -

 TEXT9, TEXTA, TEXTB.

 IF REQBERR NOT = '0' *DISPLAY ANY ERRORS

 EXHIBIT REQBERR *

 EXHIBIT REQBINFO. *

 DYNOPEN OUTPUT. *OPEN THE DYNAMIC FILE

 CVTDEC '0' TO CNTOUT. *CLEAR COUNTER

LOOP2 WRITE OUTPUT FROM TRANFILE. *OUTPUT THE DATA RECORD

 ADD '1' TO CNTOUT. *ADD 1 TO COUNTER

 READ TRANFILE. *

 IF ACCTNUM = TXT2ACCT *

 GOTO LOOP2. *

 DYNCLOSE OUTPUT. *CLOSE THE DYNAMIC FILE

 EXHIBIT 'RECORDS ON FILE:'. *DISPLAY THE FILE NAME

 EXHIBIT TXT2DATA. *

 EXHIBIT CNTOUT. *DISPLAY TOTAL RECORDS WRITTEN

 CVTBIN '2' TO REQBVERB *REQUEST DEALLOCATE DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2

 GOTO LOOP1. *

EPILOGUE DYNCLOSE OUTPUT *CLOSE THE DYNAMIC FILE

 EXHIBIT 'RECORDS ON FILE:'. *DISPLAY THE FILE NAME

 EXHIBIT TXT2DATA. *

 EXHIBIT CNTOUT. *DISPLAY TOTAL RECORDS WRITTEN

 CVTBIN '2' TO REQBVERB *REQUEST DEALLOCATE DSNAME

 DYNALLOC OUTPUT USING REQBLOCK, TEXT1, TEXT2

 GOTO EOJ. *
DESCRIPTION:
This run will read a transaction file and split the file into separate cataloged output files

based on the data on the input file. The file must be sorted in account id order. Totals

are manually printed for each file. (See the DYNALLOC command in the Command

Section for explainations of the request block and text areas passed.)

INPUTS:
Tranfile - contains transactions for the day.

OUTPUTS:
Output - a dynamicly build dataset name 'test.xxxxxx.trnout'' and

the output files catalogued will vary based on the input.

PROCESS STEPS:
Read the transaction

(The steps to delete existing file are not shown. See Sample 86)

Allocate the file defining the name, unit, and DCB info

Open the file

Write all detail records to the file

Close, and free the dynamic file

Loop for next account to process.

Sample 88 SYNC FILES TO MODIFY DATA - ONE TO MANY
//jobname JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,10)

//STEP1 EXEC EAGLE88

//prodpol DD DSN=policy.data(0),DISP=SHR

//polfix DD DSN=patch.data,DISP=SHR

//newprod DD DSN=policy.data(+1),DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(1,1)),UNIT=SYSDA,

// DCB=(LRECL=2000,RECFM=VB,BLKSIZE=19076)

//SYSIN DD *

* EAGLE WORK AREA DEFINES *

poldate DEFINES (F=prodpol,P=23,L=6)

date DEFINES P'0831231'

prod DEFINES (F=prodpol,P=1,L=10)

fix DEFINES (F=polfix,P=1,L=10)

holdkey DEFINES C'xxxxxxxxxx' *current working key

readloop SYNC prod, fix. *sync policy production

 MOVE fix TO holdkey. *save current key to fix

 MOVE date TO poldate. *if prod file available

 IF prod EQUAL holdkey *if the two files matched

 WRITE newprod FROM polfix *write out fixed record

 DELETE prodpol. *set prod rec as deleted

 WRITE newprod FROM prodpol. *write out if available

 GOTO readloop. *loop for more
DESCRIPTION
Sync the production and patched records. Patched records will

replace all the production records matching the patching key.

This example works because the MOVE statement on holdkey will

only activate when the patch file is present. The holdkey, therefore,

remains constant until a new patch record syncs up with a matching

production file. This sample is a one-to-many example. For every

patch record, all master records are affected. See Sample 20 for a

one-to-one example.

INPUTS

Production and the patched policy files.

OUTPUTS

New production file with data modified.

PROCESS STEPS
-Read and sync all files. Records are made available for processing

in groups of matched keys (some groups will only contain 1 file

record). The move statement will only process on those files

having a record available. If prod and fixed files are matching, the

new record will be written out.

-The production record will be marked as deleted.

-Write out non-matching prod records.

-Loop for more.

Section E - ERROR MESSAGES

EAG0110 - PROCESS LOGIC ERROR...PLEASE CHECK CMDS

EAG0120 - LEASE HAS EXPIRED.....JOB CANCELED

EAG0130 - WARNING LEASE TERM HAS EXPIRED..........

EAG0140 - WARNING, CALLED PGM RTN CODE NOT = 00

EAG0141 - DB2 ERROR OCCURED, SEE REASON CODE

EAG0150 - WARNING, FIELD EDIT CAUSED OVER-FLOW

EAG0160 - REQUEST VALUE DISPLAYED

EAG0165 - TRACE REQUESTED, COMMAND ENTRY DISPLAYED

EAG0170 - CALL PARM EXCEEDS 100 LIMIT

EAG0171 - EXCEEDED 100 PERFORM LEVELS, STACK FULL

EAG0172 - EXCEEDED 100 RETURN POINTERS, STACK FULL

EAG0180 - NOT NUMERIC FIELD FOUND, PROCESS SKIPPED

EAG0181 - BINARY NUMBER EXCEEDS MAX, 2,147,483,647

EAG0182 - ADD OVERFLOWED FIELD SIZE, MAX 15 DIGITS

EAG0200 - REQUEST ACCEPTED

EAG0210 - FILE DEFINED AS BOTH INPUT AND OUTPUT

EAG0211 - MAX FILE NUMBER IS 99 PER JOB

EAG0220 - OPERAND NOT NUMERIC

EAG0221 - "INTO" FIELD MISSING

EAG0222 - "DELIMITED BY" FIELD MISSING

EAG0223 - DECIMAL SIZE GREATER THAN 15 PLACES

EAG0230 - LENGTH INVALID OR GREATER THAN 32760 LIMIT

EAG0231 - LENGTH OPERAND MAY NOT BE ZERO

EAG0240 - POSITION OPERAND GREATER THAN 32760 LIMIT

EAG0241 - POSITION OPERAND MAY NOT BE ZERO

EAG0242 - TYPE CODE NOT C, P, OR X

EAG0250 - FILE NAME GREATER THAN 8 CHARACTERS

EAG0255 - ONLY ONE FILE REQUEST ALLOWED

EAG0256 - FILE DDNAME DID NOT REQUEST A READ

EAG0257 - "WORKAREA" IS INPUT ONLY DEFINED

EAG0258 - ALL MASKS FOR A GIVEN FILE MUST BE EQUAL

EAG0260 - OPERAND KEYWORD OR PARENTHESIS MISSING

EAG0261 - PACKED NUMBER IS LIMITED TO 15 DIGITS

EAG0262 - HEX LITERAL MUST BE VALID AND FULL BYTES

EAG0263 - LABEL HAS NOT BEEN DEFINED

EAG0264 - LABEL WAS PREVIOUSLY DEFINED

EAG0265 - NO CONDITIONAL SYMBOL GIVEN

EAG0270 - NO COMMAND FILE FOUND

EAG0271 - "EOJ" IS A RESERVED TAG NAME

EAG0272 - "VAR" IS A RESERVED DATA LABEL

EAG0273 - "LOC" IS A RESERVED DATA LABEL

EAG0280 - COMMAND FILE EMPTY, PLEASE INPUT COMMAND

EAG0281 - PROCESS TAG HAS NOT BEEN DEFINED

EAG0282 - FILE NAME REQUIRED FOR EXPLICIT FORMAT

EAG0287 - DB2 SQL FORMAT ERROR, BUFFER OVERFLOWED

EAG0290 - COMMAND VERB NOT RECOGNIZED

EAG0291 - COMMAND TABLE LIMIT REACHED

EAG0292 - LITERAL POOL SIZE LIMIT REACHED

EAG0293 - "DEFINES" LABEL TABLE LIMIT REACHED

EAG0294 - ENTRY TABLE LIMIT REACHED, MAX 99

EAG0295 - NO ENTRY PARMS FOUND

EAG0296 - DLILINK AREA NAME NOT FOUND

EAG0297 - IDMS FORMAT ERROR

EAG0310 - FILE DDNAME FAILED TO OPEN, CHECK JCL

EAG0320 - SYNC ERROR, FILE MUST BE IN ASCENDING ORDER

EAG0330 - FILE IS PDS ORGANIZATION, NOT ALLOWED

EAG0340 - FILE DIRECTORY IS FULL, MEMBER NOT SAVED

EAG0350 - MEMBER ON DIRECTORY BUT NOT ON FILE

EAG0360 - FILE HAS RECFM=U, NOT ALLOWED

EAG0370 - FILE IS A PDS, USE WRITEPDS VERB

EAG0380 - FILE IS NOT A PDS TYPE

EAG0390 - FILE RECORD LENGTH IS ZERO, NOT ALLOWED

EAG0410 - EAGLER01 DD IS MISSING, PLEASE USE STANDARD PROC

EAG0510 - EAGLER08 DDNAME IS MISSING, CHECK JCL

EAG0610 - EAGLER02 DDNAME IS MISSING, CHECK JCL

EAG0710 - EAGLER03 DDNAME IS MISSING, CHECK JCL

EAG0810 - EAGLER04 DDNAME IS MISSING, CHECK JCL

EAG0910 - EAGLER05 DDNAME IS MISSING, CHECK JCL

EAG1010 - EAGLER07 DDNAME IS MISSING, CHECK JCL

EAG1020 - SORT FAILED IN XREF REPORT R07

EAG1110 - USER DICTIONARY NOT REQUESTED, DD MISSING

EAG1120 - EAGLE OBJ DDNAME IS MISSING, CHECK JCL

EAG1130 - WORD NOT FOUND IN DICTIONARY

EAG1140 - USER WORD HASHED DUPLICATE VALUE

EAG1150 - SPELLING TOTALS

EAG1210 - EAGLER06 DDNAME IS MISSING, CHECK JCL

EAG1310 - PANVALET FILE ACCESS FAILED

EAG1320 - INVALID I/O REQUEST

EAG1330 - DYNAMIC ACCESS FAILED, TASK TERMINATED

EAG1410 - VSAM ACCESS FAILED

EAG1510 - LIBRARIAN FILE ACCESS FAILED

EAG1520 - INVALID I/O REQUEST

EAG1530 - MEMBER START FAILED, MEMBER SKIPPED

EAG1770 - FATAL ERROR, NOT A COMPRESSED RECORD

EAG1910 - SQL ERROR MESSAGE ACCESS FAILURE

EAG1911 - MAX OF 10 CURSORS EXCEEDED

EAG1912 - DSNTIAR MESSAGE DECODE IS INACTIVE

EAG1915 - CURSOR NAME GREATER THAN 8 CHARACTERS

EAG1920 - SQL ERROR WARNING MESSAGE

EAG1930 - SQL STATEMENT ATTEMPTING EXECUTION

EAG1940 - STMT LOAD OF VARIABLE OVERFLOWED BUFFER

EAG1950 - NOT NUMERIC FIELD FOUND, REQUEST SKIPPED

EAG1960 - CODE:XXXX IS AN UNKNOWN VARIABLE TYPE

EAG1965 - INVALID HOST VARIABLE L=XXXXX, XXXXX REQ

EAG1966 - INTERNAL SQL WORK TABLE OVERFLOWED

EAG1967 - PROCESS WIL CONTINUE WITH SQL ERROR

EAG1968 - ATTEMPTING ROLLBACK DUE TO FATAL ERRORS

EAG1970 - SQL HOST VARIABLE TABLE EXCEEDS 300 FLDS

USER ABEND CODES:

U1001 - NON-ZERO CONDITION CODES SET, CHECK R01

 MESSAGES
EAG0110 - PROCESS LOGIC ERROR...PLEASE CHECK CMDS
EXPLANATION:

During the processing of this run, the next instruction

to execute was at the end of the command list.

Eagle88 expects a process loop handling normal

end-of-job when all records have been processed. Use

"GOTO EOJ" if you wish to stop processing at the end

of the command statements.

PROCESS RESULT:

All processing up to this point would have been

success​fully done. Return code of cc=4 will be set to

warn of a possible error.

PROGRAMMER ACTION:
Check your input commands for logic errors looking

for a fall out at the end of the command list. To avoid

the error message, at the end of your command list

code a GOTO EOJ which is equivalent to a fall out

condition.

EAG0120 - LEASE HAS EXPIRED.....JOB CANCELED
EXPLANATION:

The lease period has expired. Eagle88 will not

process any requests.

PROCESS RESULT:

Job will stop with a condition code cc=8.

PROGRAMMER ACTION:
Check with your system representative.

EAG0130 - WARNING LEASE TERM HAS EXPIRED..........
EXPLANATION:

This a warning that Eagle88 will stop processing in

 a few days.

PROCESS RESULT:

Job will process with a cond code cc=4.

PROGRAMMER ACTION:
Check with your system representative.

EAG0140 - WARNING CALLED PGM RTN CODE NOT = 00
EXPLANATION:

This is a warning that the user called program

returned a non-zero return code.

PROCESS RESULT:

Job will continue processing.

PROGRAMMER ACTION:
Check user program requirements.

EAG0141 - DB2 ERROR OCCURED, SEE REASON CODE
EXPLANATION:

The call attach facility did not succeed. The return

code and reason code values can be found in the IBM

Ad​vanced application guide manual. Normally the

cause DB2 is down or your system id given is

mistyped.

PROCESS RESULT:

Job will attempt to recover and continue.

PROGRAMMER ACTION:
Check DB2 system status and the stated reason code.

EAG0150 - WARNING FIELD EDIT CAUSED OVERFLOW
EXPLANATION:

This a warning that the data replacement failed. The

 operation required more room to expand than was

avail​able.

PROCESS RESULT:

Job will continue processing, but request will be

skipped.

PROGRAMMER ACTION:
Report R01 will report those records skipped. A

manual approach may be needed to alter those records.
EAG0160 - REQUEST VALUE DISPLAYED

EXPLANATION:

Informational message that the requested value was

converted and displayed.

PROCESS RESULT:

Job will continue processing.

PROGRAMMER ACTION:
Report R01 will report displays.

EAG0165 - TRACE REQUESTED, COMMAND ENTRY DISPLAYED
EXPLANATION:

PARM=TRACE was used on the execute statement of

Eagle88. The trace facility will list each command

 in object format as it is executed. Primary use is for

tele​phone debugging support. See your systems

represen​tative.

PROCESS RESULT:

Job will process issuing displays on R01.

PROGRAMMER ACTION:
None. Use the displays to verify your process loops.

Through telphone support, we can determine byte size,

format type, and field location as well as special verb

 indicators.

EAG0170 - CALL PARM EXCEEDS 100 LIMIT

EXPLANATION:

CALL verb request attempted to pass more than 100

data fields.

PROCESS RESULT:

Edits will continue but no processing will be done.

PROGRAMMER ACTION:
Reduce parm list to less than 100.

EAG0170 - CALL PARM EXCEEDS 100 LIMIT

EXPLANATION:

CALL verb request attempted to pass more than 100

data fields.

PROCESS RESULT:

Edits will continue but no processing will be done.

PROGRAMMER ACTION:
Reduce parm list to less than 100.

EAG0171 - EXCEEDED 100 PERFORM LEVELS, STACK FULL

EXPLANATION:

CALL verb request attempted to save it's return

address, but it exceeded 100 entries.

PROCESS RESULT:

Processing will continue as if the operation was

success​ful, but the command action was skipped for

this re​quest. Condition code of cc=4 is set.

PROGRAMMER ACTION:
Likely you have a logic problem and are calling the

performed routine without issuing a RETURN. Each

t ime you perform the same routine, another return

address is saved but never cleared with a RETURN.

Having GOTO's in a routine that jump you out of the

 performed routine can caus this common error.
EAG0172 - EXCEEDED 100 RETURN LEVELS, STACK FULL

EXPLANATION:

Same messages as EAG0171 above.

EAG0180 - NOT NUMERIC FIELD FOUND, PROCESS SKIPPED
EXPLANATION:

An automatic numeric conversion was being done, but

a non-numeric data value was found during the

operation.

PROCESS RESULT:

Processing will continue as if the operation was

success​ful, but the command action was skipped for

this re​quest. Condition code of cc=4 is set.

PROGRAMMER ACTION:
To avoid the error message use a numeric test (IF fld1

NOT NUMERIC) to clear out the bad data.

EAG0181 - BINARY NUMBER EXCEEDS MAX, 2,147,483,647
EXPLANATION:

During addition/subtraction, the result value was too

 large for a binary receiving field.

PROCESS RESULT:

Processing will continue with the warning message,

but the receiving field was not modified. Condition

code of cc=4 is set.

PROGRAMMER ACTION:
Change the receiving field to be packed or character

(15 max digits) or reduce the amount being added into

the field. IBM's max size for binary was reached.

EAG0182 - ADD OVERFLOWED FIELD SIZE, MAX 31 DIGITS
EXPLANATION:

During addition/subtraction, the internal work field

over​flowed.

PROCESS RESULT:

Processing will continue with the warning message,

but the receiving field was not modified. Condition

code of cc=4 is set.

PROGRAMMER ACTION:
Reduce or split up the add/subtract requirements.

IBM's max size for packed fields was reached.
EAG0200 - REQUEST ACCEPTED
EXPLANATION:

Editor compiled the command into the command table

ready for processing. Edits were successfully complet​

ed.

PROCESS RESULT:

Next command will be edited.

PROGRAMMER ACTION:
Confirm all commands are accepted.

EAG0210 - FILE DEFINED AS BOTH INPUT AND OUTPUT
EXPLANATION:

Editor already marked the file name given as an input

or output file, but the command given is in conflict

with the previous setting.

PROCESS RESULT:

Edits will continue but no processing will be done.

PROGRAMMER ACTION:
Review the commands given for all references of the

file name used in the command. Common causes are

 (1) using an output name on a MOVE, IF, PRINT,

DUMP, DUMPH or COMPARE statement; (2)

WRITE statement has file names reversed.

EAG0211 - MAX FILE NUMBER IS 99 PER JOB
EXPLANATION:

Editor found over 99 files being defined.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Reduce files to 99 or less.

EAG0220 - OPERAND NOT NUMERIC
EXPLANATION:

Editor found non-numerics in either LENGTH or

POSI​TION operands.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the numeric field.

EAG0221 - "INTO" FIELD MISSING
EXPLANATION:

Editor could not find the INTO keyword required in

the STRING/UNSTRING verb.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the command syntax.

EAG0222 - "DELIMITED BY" FIELD MISSING
EXPLANATION:

Editor could not find the DELIMITED BY keyword

re​quired in the STRING/UNSTRING verb.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the command syntax.

EAG0223 - DECIMAL SIZE GREATER THAN 15 PLACES
EXPLANATION:

User specified the DEC=nn greater than 15 and

 EAGLE88 has a 15 place limit. Decimal places

 should only be used on SQL update/insert fields to

 get proper values.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the command syntax.
EAG0230 - LENGTH OPERAND GREATER THAN 32760 LIMIT
EXPLANATION:

Editor found LENGTH operand value greater than

32760.

PROCESS RESULT:

Edits will continue but no process will be done.

PROGRAMMER ACTION:
Correct the numeric field.

EAG0231 - LENGTH OPERAND MAY NOT BE ZERO
EXPLANATION:

Editor found LENGTH operand value was zero, which

is not allowed.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the numeric field.

EAG0240 - POSITION OPERAND GREATER THAN 32760 LIMIT
EXPLANATION:

Editor found POSITION operand greater than 32760.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the numeric field.

EAG0241 - POSITION OPERAND MAY NOT BE ZERO
EXPLANATION:

Editor found POSITION operand equal to zero.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Correct the numeric field.

EAG0242 - TYPE CODE NOT C, P, OR X

EXPLANATION:

Editor found TYPE operand not C, P, X

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Define TYPE operand as Char, Packed, or Hex type. Default if not specified is Character.

EAG0250 - FILE NAME GREATER THAN 8 CHARACTERS
EXPLANATION:

Editor found a file name that was greater than 8

charac​ter limit.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Reduce the file name size. It must match the JCL

ddname used which also is limited to 8 characters.

EAG0255 - ONLY ONE FILE REQUEST ALLOWED
EXPLANATION:

Editor found a READ verb requesting more than one

 file name.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Change the command statement to use only one file.

EAG0256 - FILE DDNAME DID NOT REQUEST A READ
EXPLANATION:

Editor found a file name used but could not find a

READ, READPDS, or SYNC verb to request a record

read.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Remove the possible unwanted reference or add your

 read request by using a READ, SYNC, READPDS,

READLIB, or READPAN verb. This is a common

error. Check your working storage fields for a mis-

typed file name in the DEFINES. Defines fields are

always input files and never output ddnames.

EAG0257 - "WORKAREA" IS INPUT ONLY DEFINED
EXPLANATION:

Editor found the special 4K WORKAREA being

referenced as an output file. WORKAREA is only

available as an input type ddname.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Changed the write statement so that the workarea is

not the output file name.

EAG0258 - ALL MASKS FOR A GIVEN FILE MUST BE EQUAL
EXPLANATION:

Editor found a READPDS/PAN/LIB member name

mask that did not match a previous statement

definition.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
All file ddname masks within the same job step must

 match. If you wish to use the same file with a

different member name, select/read in a second

ddname for the same file.

EAG0260 - OPERAND KEYWORD OR PARENTHESIS MISSING
EXPLANATION:

Editor could not determine the next keyword to

process in the explicit syntax given.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Look for incorrect spelling or syntax in the explicit

format used. Correct and reprocess.

EAG0261 - PACKED NUMBER IS LIMITED TO 15 DIGITS
EXPLANATION:

Editor found more than the 15 digit limit in the

packed field being used.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Reduce the digit count to 15 or less and reprocess. If

 more than 15 digits are required, use Hex format

which has no limits except card size.

EAG0262 - HEX LITERAL MUST BE VALID AND FULL BYTES
EXPLANATION:

Editor found a Hex field being defined with a non-hex

character or not defined in full bytes.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Review the hex characters and correct. See DEFINES

verb in the Command Section for rules and

restrictions.

EAG0263 - LABEL HAS NOT BEEN DEFINED
EXPLANATION:

Editor could not find the label referenced. Labels must

be specified before their use. Syntax may be incorrect.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Check any spelling errors, define the label used, or

correct the syntax. Labels must start in column 1. See

DEFINES verb.
EAG0264 - LABEL WAS PREVIOUSLY DEFINED
EXPLANATION:

Editor found label being defined has already been

accepted.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Remove duplicate "DEFINES" statements.

EAG0265 - NO CONDITIONAL SYMBOL GIVEN
EXPLANATION:

"IF" statement had no conditional verb or symbol.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Review syntax of the "IF" statement and correct.

EAG0270 - NO COMMAND FILE FOUND
EXPLANATION:

EAGLE CMD file failed to open. Check JCL for

missing file.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Review JCL or use the standard JCL proc.

EAG0271 - "EOJ" IS A RESERVED TAG NAME
EXPLANATION:

EOJ is a reserved tag name used in the GOTO verb. A

EOJ routine name was found being defined by the

user.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
EOJ does not need to be defined because it is an inter​

nal branch tag name. The edit is to prevent coding

confu​sions.

EAG0272 - "VAR" IS A RESERVED DATA LABEL
EXPLANATION:

VAR is a reserved field name for dynamic

modification of field attributes. A VAR field name was

found being de​fined by the user.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
VAR does not need to be defined because it is an

internal field name. The edit is to prevent coding

errors.

EAG0273 - "LOC" IS A RESERVED DATA LABEL
EXPLANATION:

LOC is a reserved field name for dynamic

modification of field attributes. A LOC field name

was found found being defined by the user.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
LOC does not need to be defined because it is an inter​

nal field name. The edit is to prevent coding errors.
EAG0280 - COMMAND FILE EMPTY, PLEASE INPUT COMMAND
EXPLANATION:

EAGLE CMD file was empty. Process requests are re​

quired and will not default.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Input commands for processing.

EAG0281 - PROCESS TAG HAS NOT BEEN DEFINED
EXPLANATION:

A GOTO verb was used and referenced a process tag

 but it could not resolve the reference.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Define the label.

EAG0287 - DB2 SQL FORMAT ERROR, BUFFER OVERFLOWED
EXPLANATION:

An SQL statement was identified by the use of "EXEC

SQL". The statement given did not fit in the 32760

byte dymanic buffer area as required by the dynamic

SQL facility. This size also includes the total number

of field bytes along with the statement command

string. Nor​mally the user has symply forgotten the

"END-EXEC" to denote the end of the SQL.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Review the SQL command.

EAG0290 - COMMAND VERB NOT RECOGNIZED
EXPLANATION:

Editor could not determine process verb that was re​

quested.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Check syntax and spelling for the indicated statement.

EAG0291 - COMMAND TABLE LIMIT REACHED
EXPLANATION:

Editor could not build any more commands into the

command table. See system representative for limit

details.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Reduce command statement size. Removing periods

 "." will save command entries in the table.

EAG0292 - LITERAL POOL SIZE LIMIT REACHED
EXPLANATION:

Editor could not build any more literals into the literal

table. See system representative for limit details.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
Reduce literals used in the command stmts.

EAG0293 - "DEFINES" LABEL TABLE LIMIT REACHED
EXPLANATION:

Editor could not build any more labels into the label

table. See system representative for limit details.

PROCESS RESULT:

Edits will continue but will not process.
PROGRAMMER ACTION:
Reduce labels used in the "DEFINES" stmts.

EAG0294 - ENTRY TABLE LIMIT REACHED, MAX 99
EXPLANATION:

The editor found more than 99 parms being requested,

which overflows Eagle88's storage limit.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
The maximum PCBs that can be passed to Eagle88

 is 99. If you are calling from another supervisor

program passing linkage parms, we suggest you group

the elements under a common layout to avoid the 99

indi​vidual field address limit. Although it is not

advertised, Eagle88 can be called from any User

program as well as call User programs by using the

ENTRY/DLILINK verbs.
EAG0295 - NO ENTRY PARMS FOUND
EXPLANATION:

Editor found a request for linkage parms but did not

find a valid ENTRY verb.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
DLILINK requires an ENTRY verb. See the

command section under DLILINK.

EAG0296 - DLILINK AREA NAME NOT FOUND
EXPLANATION:

Editor could not match the linkage area name in the

ENTRY.

PROCESS RESULT:

Edits will continue but will not process.

PROGRAMMER ACTION:
DLILINK requires an ENTRY verb. See the

command section under DLILINK.

EAG0297 - IDMS FORMAT ERROR
EXPLANATION:

The given command was determined to be an IDMS

process command. However, the full IDMS syntax

was not correct.

PROCESS RESULT:

No processing will occur, job will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Correct the IDMS command verb syntax.

EAG0310 - FILE DDNAME FAILED TO OPEN, CHECK JCL
EXPLANATION:

Input or output file failed to open.

PROCESS RESULT:

No processing will occur; job will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG0320 - SYNC ERROR, FILE MUST BE IN ASCENDING ORDER
EXPLANATION:

Input files using in the SYNC process was found to be

not ascending.

PROCESS RESULT:

Partial processing may have occurred. Job will stop

with a return code of cc=8.

PROGRAMMER ACTION:
Make sure the input files are sorted ascending and

rerun job.

EAG0330 - FILE IS PDS ORGANIZATION, NOT ALLOWED
EXPLANATION:

A READ verb was requested on an entire PDS file.

The READ and SYNC verb can only read QSAM or

VSAM VB or FB files.

PROCESS RESULT:

No processing has begun. Job will stop with a return

 code of cc=8.

PROGRAMMER ACTION:
If library processing is needed use the READPDS

verb. Otherwise check the JCL to see if the member

name was specified on the file.

EAG0340 - FILE DIRECTORY IS FULL, MEMBER NOT SAVED
EXPLANATION:

The PDS file directory is full.

PROCESS RESULT:

Partial processing may have occurred. Job will stop

with a return code of cc=8.

PROGRAMMER ACTION:
Delete the old file and re-allocate the directory blocks

on the file. Eagle88 can write up to 21 member

entries per directory block.

EAG0350 - MEMBER ON DIRECTORY BUT NOT ON FILE
EXPLANATION:

The PDS file directory is probably damaged.

PROCESS RESULT:

Partial processing may have occurred. Job will stop

with a return code of cc=8.

PROGRAMMER ACTION:
A rare situation but possible should two jobs be

updating the PDS at the same time.

EAG0360 - FILE HAS RECFM=U, NOT ALLOWED
EXPLANATION:

Eagle88 will not permit the processing of

 undefined files such as load libraries.

PROCESS RESULT:

No processing will begin. Task will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Load libraries are not permitted to be accessed or

modi​fied with Eagle88. See your systems software

 staff for special load module modifying utilities.

EAG0370 - FILE IS A PDS, USE WRITEPDS VERB
EXPLANATION:

A QSAM sequential output request was made on a

PDS defined file.

PROCESS RESULT:

No processing will begin. Task will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Check your processing verbs. You must change either

your JCL or your WRITE request.

EAG0380 - FILE IS NOT A PDS TYPE
EXPLANATION:

A READPDS was made on a sequential file. You

must use a READ verb.

PROCESS RESULT:

No processing will begin. Task will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Check your processing verbs. You must change either

your JCL or your READ request.

EAG0390 - FILE RECORD LENGTH IS ZERO, NOT ALLOWED
EXPLANATION:

The file requested has a record length of zero. Unde​

fined file formats are not permitted.

PROCESS RESULT:

No processing will begin. Task will stop with a return

code of cc=8.

PROGRAMMER ACTION:
Load libraries are not permitted to be or modified with

Eagle88. See you systems software staff for special

 load module modifying utilities.

EAG0410 - EAGLER01 DD IS MISSING, PLEASE USE STANDARD PROC
EXPLANATION:

EAGLER01 output print file failed to open. Message

will display on the JES log.

PROCESS RESULT:

Edits will not continue. Job will stop.

PROGRAMMER ACTION:
Correct the JCL by adding EAGLER01 ddname.
EAG0510 - EAGLER08 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG0610 - EAGLER02 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG0710 - EAGLER03 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG0810 - EAGLER04 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.
EAG0910 - EAGLER05 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG1010 - EAGLER07 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG1020 - SORT FAILED IN XREF REPORT R07
EXPLANATION:

The XREF report has an internal sort to process the

data names. Check your sort messages on the JES log

for more messages.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Possible sort work space problems. Contact the system

representative for further information.

EAG1110 - USER DICTIONARY NOT REQUESTED
EXPLANATION:

Spelling facility attempted to read user dictionary

words from ddname EAGLE WRD.

PROCESS RESULT:

Warning message only, Eagle88's base dictionary

 will be used.

PROGRAMMER ACTION:
Standard Proc specifies this ddname as DUMMY to

avoid message.

EAG1120 - EAGLE OBJ DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output ddname for object word dictionary is missing.

PROCESS RESULT:

Job terminates.

PROGRAMMER ACTION:
Restricted process.

EAG1130 - WORD NOT FOUND IN DICTIONARY
EXPLANATION:

Word found in text could not be located in dictionary.

PROCESS RESULT:

Informational message displayed

PROGRAMMER ACTION:
Eagle88 could not find the displayed word in its

dic​tionary. New words can be added to the dictionary

process via EAGLE WRD. This file requires one word

per record with file attributes of RECFM=VB and

LRECL=34. See SPELL verb for more information.

EAG1140 - USER WORD HASHED DUPLICATE VALUE
EXPLANATION:

User word entered via EAGLE WRD ddname was

hashed numerically, but was already found in the

dictionary.

PROCESS RESULT:

Warning message to indicate duplicate. Processing

will continue. PROGRAMMER ACTION:
Error

indicates two situations. One, the word already exists

in the dictionary, or two, the dictionary is becom​ing

full. It is estimated Eagle88's hashing algorithm

can handle 150,000 words.

EAG1150 - SPELLING TOTALS
EXPLANATION:

Spelling check totals.

PROCESS RESULT:

Information message. Processing will continue.

PROGRAMMER ACTION:
None.

EAG1210 - EAGLER06 DDNAME IS MISSING, CHECK JCL
EXPLANATION:

Output print file failed to open.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Correct the JCL and rerun job.

EAG1310 - PANVALET FILE ACCESS FAILED
EXPLANATION:

Panvalet file open or read failed.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
The most common problem is an invalid interface to

the Panvalet browse modules. New releases of

Panvalet, incorrect file definitions with respect to

recfm=u have been found over the years. See your

system representa​tive for assistance.

EAG1320 - INVALID I/O REQUEST
EXPLANATION:

Eagle88 attempted to recover from error EAG1310,

 but could not proceed.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
See problem EAG1310 for details.

EAG1330 - DYNAMIC ACCESS FAILED, TASK TERMINATED
EXPLANATION:

Eagle88 requested a work file dynamically but the

 operating system could not satisfy the request.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Eagle88 most likely requested a device such as

SYSDA that is not defined for your data center. See

your system representative for assistance.

EAG1410 - VSAM ACCESS FAILED
EXPLANATION:

VSAM read access failed.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Verify the VSAM file is defined correctly or see your

system representative for assistance.
EAG1510 - LIBRARIAN FILE ACCESS FAILED
EXPLANATION:

Librarian file open or read failed.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
The most common problem is an invalid interface to

the Librarian browse modules. New releases of

Librarian, incorrect file definitions with respect to

recfm=u have been found over the years. See your

system representa​tive for assistance.
EAG1520 - INVALID I/O REQUEST
EXPLANATION:

Eagle88 attempted to recover from error EAG1510,

 but could not proceed.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
See problem EAG1510 for details.

EAG1530 - MEMBER START FAILED, MEMBER SKIPPED
EXPLANATION:

A member was found in the directory but when it

started to read the entry, the member records were not

found.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=8.

PROGRAMMER ACTION:
Verify that another user did not delete the member

while your task was processing. Otherwise see your

system representative.

EAG1770 - FATAL ERROR, NOT A COMPRESSED RECORD
EXPLANATION:

The file record being decompressed did not contain the

special control flag bytes. Decompress is not possible.

PROCESS RESULT:

Partial processing may have occurred to the request.

Processing attempt to continue with a return code of

cc=4.

PROGRAMMER ACTION:
Verify that the command syntax is correct. Often you

have the ddnames reversed. The compressed file

should be on the left and the receiving file to the right.

EAG1910 - SQL ERROR MESSAGE ACCESS FAILURE
EXPLANATION:

This is an internal programming message indicating

DSNTIAR load module could not be found.

PROCESS RESULT:

Processing will continue, but you should check with

the systems representative for correction.

PROGRAMMER ACTION:
None, this is a Eagle88 internal error.

EAG1911 - MAX OF 10 CURSORS EXCEEDED
EXPLANATION:

Eagle88 has a 10 cursor limit for DB2 user

 declared cursors in a single process step. This limit

can extended upon request and reload of your DB2

Eagle88 sys​tem.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Reduce the number of unique cursors being defined.

 Cursors can be dynamically rebuilt by using

 Eagle88 symbolics in place of keywords and even

 table names. By re-executing the "DECLARE" and

the open/fetch/close logic. See reference section for

examples.
EAG1912 - DSNTIAR MESSAGE DECODE IS INACTIVE
EXPLANATION:

Eagle88 uses IBM's DSNTIAR program to decode

the SQLCODE into text. This program is not properly

linked into the EAGLE load module and cannot be

called. Please refer the problem to your systems

support staff. DSNTIAR must be statically linked into

the EAGLE load. Refer to the installation guide for

DB2 link requirements.

PROCESS RESULT:

Processing will continue normally.

PROGRAMMER ACTION:
Please refer the problem to your systems

support staff. DSNTIAR must be statically linked into

the EAGLE load. Refer to the installation guide for

DB2 link requirements.

EAG1915 - CURSOR NAME GREATER THAN 8 CHARACTERS
EXPLANATION:

The DB2 cursor name given is greater the 8 characters

which is a Eagle88 limit.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Reduce the cursor name size to eight.

EAG1920 - SQL ERROR WARNING MESSAGE
EXPLANATION:

DB2 has issued an error message. The text of the

error is printed as received from the dbms.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Refer to the IBM DB2 error manual for details of the

 condition. The information given is similar to

messages received in COBOL program erorr handling

routines.

EAG1930 - SQL STATEMENT ATTEMPTING EXECUTION
EXPLANATION:

This message follows EAG1920 and prints the SQL

statement that Eagle88 was attempting to process.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Verify the command listed is the format and variables

you intended to use. Possibly the symbolic substitution

you requested caused an invalid DB2 statement.

EAG1940 - STMT LOAD OF VARIABLE OVERFLOWED BUFFER
EXPLANATION:

This is an internal programming message indicating a

variable being loaded into the dynamic SQL verb

buffer was too large for Eagle88's reserved work

space.

PROCESS RESULT:

Processing will stop with a cc=8. Please check with

the systems representative to report the problem.

PROGRAMMER ACTION:
None, this is a Eagle88 internal error.

EAG1950 - NOT NUMERIC FIELD FOUND, REQUEST SKIPPED
EXPLANATION:

See message EAG0180

EAG1960 - CODE:XXXX IS AN UNKNOWN VARIABLE TYPE
EXPLANATION:

xxxx is filled in with an error code for more

 information. See the DB2 manuals for value

descriptions. This is an internal Eagle88 error

message. The variable type given is not supported.

PROCESS RESULT:

Processing will stop with a cc=8. Please check with

the systems representative to report the problem.

PROGRAMMER ACTION:
None, this is a Eagle88 internal error.

EAG1965 - INVALID HOST VARIABLE L=XXXXX, XXXXX REQ
EXPLANATION:

The DB2 variable given is too large to fit in the

receiving field.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Check the variables listed in the request SQL verb.

One of your variables will exceed the receiving field.

Increase the receiving field to at least the size

required.

EAG1966 - INTERNAL SQL WORK TABLE OVERFLOWED
EXPLANATION:

The SQL cursor requested does not match up with the

host variables given on the FETCH statement.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Correct the variables listed in the request SQL verb.

EAG1967 - PROCESS WILL CONTINUE WITH SQL ERROR
EXPLANATION:

This an informational message warning you that an

SQL error code was issued but Eagle88 will ignore

 it and continue.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will continue.

PROGRAMMER ACTION:
None, verify that you expected the condition listed.

EAG1968 - ATTEMPTING ROLLBACK DUE TO FATAL ERRORS
EXPLANATION:

The SQL error code listed is severe enough for work​

EAGLE to automatically issue a rollback. Rollback will

be up to the last valid commit point.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Correct SQL error code listed.

EAG1970 - SQL HOST VARIABLE TABLE EXCEEDS 300 FLDS
EXPLANATION:

Eagle88 and IBM have a 300 column limit for SQL

 statements.

PROCESS RESULT:

Partial processing may have occurred prior to the re​

quest. Processing will stop with a return code of cc=8.

PROGRAMMER ACTION:
Reduce the variables listed in the request SQL verb.

U1001 - NON-ZERO CONDITION CODES SET, CHECK R01 MESSAGES
EXPLANATION:

Eagle88 was executing with PARM=ABEND

which issues a user abend should edit or process errors

occur in the job.

PROCESS RESULT:

Partial processing may have occurred prior to the

output request. Processing will stop with a return code

of cc=U1001 abend.

PROGRAMMER ACTION:
Check for messages on R01 edit report.

ERRORS=ABEND is not required and generally only

used to prevent cataloging files.

Section F - TUTORIAL LESSONS
Our lesson plan in this section will cover the more common uses of Eagle88. Each lesson contains a task sample, expected results, and points to observe. When you need more information on a particular topic, refer to the command reference and the example sections. These lessons will cover:

Lesson 1 - Getting started

1) Make sure Eagle88 works

2) Concept of "process loop"

3) Syntax

Lesson 2 - File record prints

1) Various prints available

2) Request print at any time

3) Alternate "prints"

Lesson 3 - Modifying records

1) Fields defined

2) Left to right moves

3) Right to left moves

4) Short to longer fields

5) Long to shorter fields

6) Edit expand/contract

7) Propagating moves

Lesson 4 - File modification

1) File coordination from another file

2) Numeric conversion

Lesson 5 - File synchronized

1) Automatic coordination

2) Concept of delete/not active

3) Eagle88 internals chart

Lesson 6 - File scanning

1) Quick scan & print

2) Location setting

3) Moves based on location pointer

Lesson 7 - Library processing

1) Directory list

2) Member name modification

3) Output members

Lesson 8 - Xref source code

1) Special purpose report

2) Can exclude names

Lesson 9 - File compares

1) Single record concept

2) Can selectively exclude fields

Lesson 10 - Sync compares

1) What "not available" means

Lesson 11 - Library compares

1) Within members coordinated

2) Blank out sequence numbers

Lesson 12 - Special formatting

1) Using workarea
Lesson 1, Getting started

Logon to your system, create or copy from SYSTECH.V7TUTOR.CNTL(LESSON01) and submit the follow​ing JCL.

Note: Changes might be required for job statement and datasets due to your data center's standards.
//LESSON1 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//A DD DSN=SYSTECH.V7TUTOR.DATA(LSN001),DISP=SHR

//SYSIN DD *

* Eagle88 COMMANDS *

LOOP READ A. *READ NEXT RECORD

 PRINT A. *PRINT RECORD

 GOTO LOOP. *LOOP FOR MORE

/*

//
Purpose:
This is an everyday task to list a data file. The purpose of this demonstration is to verify the Eagle88 proc and confirm that the tutorial samples are available. Route the output to a printer before you proceed with this tutorial.
Expected results:
The report just printed has several parts:

a)
JES log for start/end and warning messages

b)
Execution JCL showing the expanded Eagle88 Proc

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST showing command edits

e)
EAGLER02 FILE PRINT LIST showing the records on the file

f)
EAGLER08 STATISTICS LIST showing Eagle88 file counts

Throughout these lessons we refer to reports as R01, R02, R03...etc. A complete list of reports Eagle88 produces is described in the introduction section of this manual.
Points to observe:
In this sample, the task is to print all the records on the given file. Eagle88 knows which file to open by the ddname given on the READ and PRINT statement. Any ddname up to 8 characters may be used except those used in the Proc or the reserved ddname WORKAREA.

You will also note that the sample forces a "process loop" to repeat the commands. Eagle88 tests for end of file each time a read is made. When all the input files for a given task are at end, the task will termi​nate and report the statistics of the run.

Eagle88 has separate reports. This gives you the ability to efficiently browse the output queue for a Eagle88 run by "skipping" through sysout files. Likewise, you can send different reports to other sysout classes such as record prints to microfiche and the run stats to standard stock paper (minor points but quite useful).

A word about syntax rules:
Commands are entered via SYSIN DD statement. They may use column 1 thru 71. A label for process branching is defined by starting the 8 character name in column 1. An "*" in column 1 indicates comment card. Completely blank cards are allowed to enhance readability.

Only one command verb is allowed per input card (the only exceptions are SYNC, CALL, and ENTRY which may span multiple cards). Any values beyond the required syntax will be treated as comments.

THIS IS IMPORTANT. Do not code multiple verbs on the same line.

The following example of an IF verb and a GOTO verb coded on the same line will fail to produce the intended results. The GOTO will be treated as comments.

 LOOP READ TESTFILE *INCORRECT SAMPLE
 IF DATE = '061285' GOTO LOOP.

 LOOP READ TESTFILE *CORRECT SAMPLE

 IF DATE = '061285'

 GOTO LOOP.
Lesson 2, File prints
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON02).

//LESSON2 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//FILEIN DD DSN=SYSTECH.V7TUTOR.DATA(LSN002),DISP=SHR

//SYSIN DD *

* PRINT & DUMP RECORDS *

LIMIT DEFINES C'3' *RECORD COUNT

LOOP READ FILEIN. *READ RECORD

 IF COUNTIN OF FILEIN > LIMIT *IF RECORD LIMIT REACHED

 GOTO EOJ. * YES-SHUT DOWN TASK

 PRINT FILEIN. *PRINT RECORD

 DUMPV FILEIN. *VERT DUMP REC

 DUMPH FILEIN. *HORTIZONTAL DUMP REC

 GOTO LOOP. *GET MORE RECORDS

//
Purpose:
This sample will read up to 3 input records. Each record will be printed and dumped to illustrate the various formatted reports.

Expected results:
The report printed has several parts:

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER03 VERTICAL DUMP LIST

g)
EAGLER04 HORIZONTAL DUMP LIST

h)
EAGLER08 STATISTICS LIST

The stats report should show that the input file was still in process as indicated by the "P" value under the EOF title. A count of the number of records sent to each report type is also given.

Points to observe:
File prints can be obtained in several different formats depending on the verb used. Since each of these verbs has its own sysout dataset, each format prints separately.

The formats are:

PRINT

displays character data (100 bytes per line).

DUMPV
same as above except that hex representation appears

below each character.

DUMPH
character and hex in core dump format.

For all formats, dataset name, creation date, and volume number appear on every page.

Note: There is another alternative for displaying a record or a message. Simply define your output file as sysout. You can use carriage control by setting aside position 1 of your output print line and using RECFM=FBA on the JCL. Now you have available up to 99 display reports for special summaries, messages, or data prints without the heading information.

Lesson 3, Modifying records
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON03).

//LESSON3 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//FILEIN DD DSN=SYSTECH.V7TUTOR.DATA(LSN003),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

TYPE DEFINES (F=FILEIN,P=1,L=3) *RECORD ID

TYPEDIT DEFINES (F=FILEIN,P=1,L=2) *EDIT RECORD

DATE1 DEFINES (F=FILEIN,P=4,L=6) *MOVE LEFT

DATE DEFINES (F=FILEIN,P=5,L=6) *ACTIVITY DATE

CLEAR DEFINES (F-FILEIN,P=10,L=1) *CLEAR AREA

DESC DEFINES (F=FILEIN,P=30,L=20) *SHORT MOVE FILL BLANKS

MONTH DEFINES (F=FILEIN,P=51,L=2) *TRUNCATED MOVE

PROP1 DEFINES (F=FILEIN,P=66,L=15) *HIGH VALUE FILLER

PROP2 DEFINES (F=FILEIN,P=67,L=14) *OVERLAPPED AREA

DATEWORK DEFINES (F=WORKAREA,P=1,L=6) *MOVE RIGHT

NEWDATE DEFINES '061292' *NEW DATE VALUE

LOOP READ FILEIN. *READ RECORD

 IF TYPE = '687' *IF DIRECT BILLING RECORD

 PRINT FILEIN * YES-PRINT BEFORE IMAGE

 MOVE NEWDATE TO DATE * 1) MODIFY EQUAL SIZES

 PRINT FILEIN *

 MOVE NEWDATE TO MONTH * 2) TRUNCATED VALUE

 PRINT FILEIN *

 MOVE DATE TO DATE1 * 3) OVERLAPPED LEFT MOVE

 MOVE ' ' TO CLEAR * CLEAR EXCESS BYTE

 PRINT FILEIN *

 MOVE DATE1 TO DATEWORK * 4) OVERLAPPED RIGHT MOVE

 MOVE ' ' TO DATE1 * CLEAR OLD AREA

 MOVE DATEWORK TO DATE * MOVE FROM SCRATCH PAD

 PRINT FILEIN *

 MOVE 'GOLD OPTION' TO DESC * 5) BLANK FILL DESCRIPTION

 PRINT FILEIN * PRINT AFTER IMAGE

 EDIT '87' TO TYPE * 6) EDIT 687 TO BE 87

 PRINT FILEIN * PRINT AFTER IMAGE

 EDIT '6879212' TO TYPEDIT. * EDIT 87 TO BE 6879212

 PRINT FILEIN. *

 MOVE C'9' TO PROP1. * 7) SET FIRST BYTE TO 9

 MOVE PROP1 TO PROP2. *PROPAGATE 9

 WRITE FILEOUT FROM FILEIN. *OUTPUT MODIFIED RECORD

 PRINT FILEIN. *

 GOTO LOOP. *LOOP FOR MORE
Purpose:
The above sample illustrates the various MOVE situations you will encounter.

Expected results:
The report printed has several parts. The print list report should contain several before/after images of the record as it is modified. You will find this technique useful.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER08 STATISTICS LIST

Points to observe:
To modify the data on a record you must read in the records, locate the record you wish to change, and then issue a MOVE verb to the location that requires modification (see comment 1 on preceding page example). A larger field to a smaller field move will cause truncation (see comment 2). A smaller to a larger field will cause the remaining bytes to be blank filled (see comment 5).

The right to left data move for overlapping fields (see comment 3) works as expected, but the left to right requires a temporary move to a holding area. We used the 4K scratch pad for this purpose (see comment 4). Once the data is moved we have cleared the original area and then moved the data into the new loca​tion. As you may know COBOL does not allow overlapping field moves.

Field "edits" can be done with the EDIT verb. If receiving field is smaller than sending, the field is expand​ed shifting to the right. If receiving field is larger than sending field, the record is shifted to the left until a blank is found in the record (see comment 6).

You can propagate a given value throughout an area by moving a single value to the beginning of the field and then requesting a move from left to right offset by one byte (see comment 7). Because the move is done one byte at a time, the given value will be carried forward until the end of the field. The maximum field size for each MOVE is 32760 bytes.
Lesson 4, File modification from another file
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON04).

//LESSON4 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.DATA(LSN004A),DISP=SHR

//PATCHES DD DSN=SYSTECH.V7TUTOR.DATA(LSN004B),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

* MODIFY RECORDS FROM PATCH FILE *

KEY1 DEFINES (F=PROD,P=5,L=3) *RECORD ID

KEY2 DEFINES (F=PATCHES,P=1,L=3) *RECORD ID

NEWVALUE DEFINES (F=PATCHES,P=30,L=6) *NEW DATA

NEWDEC DEFINES (F=PATCHES,P=40,L=6,T=C) *NEW DIGIT VALUE

OLDVALUE DEFINES (F=PROD,P=48,L=6) *OLD DATA

OLDBIN DEFINES (F=PROD,P=58,L=2,T=X) *OLD BINARY

 READ PROD. *READ INIT

 READ PATCHES. *READ INIT

LOOP IF KEY1 = KEY2 *IF PROD REC = PATCH REC

 DUMP PROD * Y-PRINT BEFORE IMAGE

 MOVE NEWVALUE TO OLDVALUE * Y-REPLACE VALUE

 CVTBIN NEWDEC TO OLDBIN * Y-CONVERT & REPLACE

 WRITE FILEOUT FROM PROD * Y-OUTPUT REC

 DUMP PROD * Y-PRINT THE UPDATE REC

 READ PATCHES * Y-READ NEW PATCH

 READ PROD * Y-READ NEW PROD

 GOTO LOOP. * Y-LOOP FOR TEST

 IF KEY1 > KEY2 *IF PROD REC > PATCH REC

 READ PATCHES * Y-READ NEW PATCH

 GOTO LOOP. * Y-LOOP FOR TEST

 IF KEY1 < KEY2 *IF PROD REC < PATCH REC

 WRITE FILEOUT FROM PROD * Y-OUTPUT PROD REC

 READ PROD * Y-READ NEW PROD

 GOTO LOOP. * Y-LOOP FOR TEST

/*

//
Purpose:
This is a commonly used feature. Data that is on one file is to be transferred to the correct record on the production file. To accomplish this we must match the first file to the second file. Files are assumed to be in ascending order.

Expected results:
The report printed has several parts. Changes to the file get recorded as before and after image print.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER08 STATISTICS LIST

Points to observe:
This lesson shows how to match two files in order to modify one of the files. The PROD file contains the original data which must be modified from data contained on the PATCH file.

We are using a manual technique to test for high and low conditions based on some file sort order. When the keys match we will move data from one file to another. Reads are done depending on the need for one file to catch up to the other file.

"Data is data" should be the title of this lesson. If the information you need is stored on the machine, Eagle88 and your text editor can probably combine and reformat it for your needs. This is one of many instances where Eagle88 is the quickest way to solve a problem.

Lesson 5, File synchronization

Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON05).

//LESSON5 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.DATA(LSN005A),DISP=SHR

//PATCHES DD DSN=SYSTECH.V7TUTOR.DATA(LSN005B),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

* MODIFY RECORDS FROM PATCH FILE *

KEY1 DEFINES (F=PROD,P=5,L=3) *RECORD ID

KEY2 DEFINES (F=PATCHES,P=1,L=3) *RECORD ID

NEWVALUE DEFINES (F=PATCHES,P=30,L=6) *NEW DATA

NEWDEC DEFINES (F=PATCHES,P=40,L=6,T=C) *NEW DIGIT VALUE

OLDVALUE DEFINES (F=PROD,P=48,L=6) *OLD DATA

OLDBIN DEFINES (F=PROD,P=58,L=2,T=X) *OLD BINARY

LOOP SYNC KEY1, KEY2. *AUTOMATIC READS

 IF KEY1 = KEY2 *IF PROD REC = PATCH REC

 DUMP PROD * Y-PRINT BEFORE IMAGE

 MOVE NEWVALUE TO OLDVALUE * Y-REPLACE VALUE

 CVTBIN NEWDEC TO OLDBIN * Y-CONVERT & REPLACE

 DUMP PROD. * Y-PRINT AFTER IMAGE

 WRITE FILEOUT FROM PROD. *OUTPUT PROD RECORD

 GOTO LOOP. *LOOP FOR MORE
Purpose:
This sample demonstrates the automatic coordinating read facility of Eagle88. In function, it is identi​cal to Lesson 4.

Expected results:
The report printed has several parts including before and after print images.

a)
EAGLER01 COMMAND EDIT LIST

b)
EAGLER02 PRINT LIST

c)
EAGLER08 STATISTICS LIST

Points to observe:
This sample is a short cut to match multiple files. The restrictions are the same as the manual technique we saw in lesson 4: the files must be in ascending order and a matching key must be given. As we ex​plain SYNC please refer to the internal chart on the following page.

SYNC, when issued for the first time, will read all files and store the first record in their staging areas (see items a & c). A search is then made in each staging area for the lowest key value. When the lowest key is found, a second scan is made to copy the matching key's records into the active areas (see items b & d). Eagle88 will then mark in the control area's RECORDSW to be "P" indicating "present" (see item e) for those records that are available. Those records that are not available are marked as an "E" indicating "empty" in their RECORDSW.

You are assured upon return from a SYNC request that at least one record is present. Possibly there is more than one, but they all have the same key.

There is one more feature of Eagle88 to note. Every verb in Eagle88 checks before executing to see if the record specified in the operation is available. This means that a PRINT or a WRITE request will be bypassed for records not available. Should the operation be an IF statement, the IF statement and its related IF group will be skipped. This means your commands will be more compact and will not require special bypass tests.

The verb DELETE also causes the same "empty" situation as the SYNC. You can keep your code brief by DELETEing a record, and all subsequent commands which try to use that record will be skipped. The record indicator is reset when another READ or SYNC is requested.

Eagle88 LOGICAL VIEW
The following chart is a logical overview of Eagle88's internals. Each section is identified and de​scribed in the following page.

 INPUT1 INPUT2 INPUT 99

 _________ _________

Staging =====> | (a) | | (c) |

 |_________| |_________|

 ___ _________ ___ _________

Active ==> |(e)|| (b) | |ctl|| (d) |

 |___||_________| |___||_________|..... 99 files

(f) (g) (h)

 _________ _____________ _______________

| command | | Eagle88 | | |

| list | | Processor | | 4k WORKAREA |

|---------| |-------------| | |

| | | | |_______________|

| read | | edits, I/O | (i)

| if = 1 | | handing | _______________

| print| | cmd routines| | |

| move | | | | Literal area |

| print| |_____________| |_______________|

| write |

| goto |

|_________| REPORTS R01 CMD EDITS

 R02 PRINT

 (j) (k) (l) (m) R03 DUMPV

 R04 DUMPH

 ...OUTPUT1 OUTPUT2 OUTPUT nn R05 COMPARE

 R07 XREF

 R08 STATS
Description:
(a)
Record staging area for SYNC requests. One staging area for each input file.
Staging area is not accessible to task commands. Staging area size is equal to the
record size.

(b)
Record active area. One active area for each input file is referenced by the file's
ddname. Active area size is equal to the record size. All process verbs use the
active areas. All data modifica​tions are done in the active area.

(c)
Additional input file staging areas.

(d)
Additional input file active areas.

(e)
Control area for the input file ddname containing record counts, record status, `
current PDS member name, and scan location pointers. All values are accessible
using the "IF" statement command. Member name may be modified

for renaming, merging, etc. by use of the "MOVE" command. See IF

command section 3 for a complete list of control fields and their values.

(f)
Command execute table which stores command statements in executable form.
The command table will request space depending on the number of source
statements. The number of com​mands are unlimited other than task region size.

(g)
Eagle88 processor which contains the editor, input/output module, and
command routines.

(h)
WORKAREA is a special ddname which reserves a 4K scratch pad

area initialized as hex zeros. WORKAREA is activated when referenced by

a "DEFINES" or when referenced by a processing command. Should a larger

or smaller size be desired, you can set up an input file and read one record. '

This technique is especially useful in building large records or comparing

 portions of records.

(i)
Literal pool is a 4K area automatically built whenever a literal is used in the
command statements.

(j)
The output file is referenced by ddname. Output records are built in input record
ddname-in". Output records are not accessible. An output file's characteristics
are defined by the JCL DCB. There​fore, regardless of the size of the input record,
the output file will only output the size specified by the JCL.

(k)
Additional output files. Extra record counts, special messages, as well as the
normal file splits are common uses of the output ddnames.

(l)
Additional output files.

(m)
Reports as requested by the user.

Lesson 6, File scanning
Part 1 of 3
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON6A).

//LESSON6 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V3TUTOR.DATA(LSN006),DISP=SHR

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READ PROD. *READ FILE

 SCAN PROD FOR 'NEWYORK'. *SCAN & PRINT FILE

 GOTO LOOP. *LOOP FOR MORE

Purpose:
This is a quick way to scan a file for a data value. The verb SCAN combines a scan and print function for each record containing the value given.

Expected results:
The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST shows scan hits

f)
EAGLER08 STATISTICS LIST

Part 2 of 3
This sample gets the same results as above. Try it instead.

LOOP READ PROD. *READ FILE

 SCANTEST PROD FOR 'NEWYORK'. *SCAN FOR VALUE

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD. * Y-PRINT REC

 GOTO LOOP. *LOOP FOR MORE
Part 3 OF 3
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON6B).

//LESSON6 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.DATA,DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=8000)

//SYSIN DD *

* FILE SCAN/REPLACE *

FLD01 DEFINES (F=PROD,P=LOC,L=7) *VARIABLE LOCATION

LOOP READ PROD. *READ FILE

 SCANTEST PROD FOR 'NEWYORK' *SCAN FOR VALUE

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD * Y-PRINT BEFORE IMAGE

 MOVE 'CHICAGO' TO FLD01 * Y-REPLACE VALUE

 PRINT PROD. * Y-PRINT REPLACED REC

 WRITE FILEOUT FROM PROD. *OUTPUT RECORD

 GOTO LOOP. *LOOP FOR MORE

Expected results:
The report prints have several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER08 STATISTICS LIST

Points to observe:
These three samples show how to do quick scans and controlled scans. The quick scan simply prints the record containing the scanned value on the PRINT report R02.

The controlled scan searches the record and when the value is found, a "hit" indicator is set on. In addi​tion to setting the indicator, a location pointer value is stored. This location pointer may be used in a MOVE or IF statement. See the DEFINES verb in the reference section for more information.
Lesson 7, Library processing

Part 1 of 2
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON7A).
//LESSON7 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.CNTL,DISP=SHR

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READPDS PROD FOR LESSON**. *READ ALL LESSON MEMBERS

 SCAN PROD FOR 'V7TUTOR.CNTL' *SCAN & PRINT FILE

 GOTO LOOP. *LOOP FOR MORE

/*

//
Purpose:
This is a quick scan of a library. Proclibs and control card libraries are commonly scanned files. Eagle88 does not lock out or slow down other tasks using the files.

Expected results:
The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER08 STATISTICS LIST

Points to observe:
The print report will display the record found, the record number, and member name containing the record.

Part 2 of 2
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON7B).

//LESSON7 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.CNTL,DISP=SHR

//LIBOUT DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,1,5)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6000,DSORG=PO)

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

NEW DEFINES 'LESSON99' *NEW NAME

UNIT DEFINES (F=PROD,P=LOC,L=5) *UNIT LOCATION

LOOP READPDS PROD FOR LESSON** *READ ALL LESSON MEMBERS

 IF MEMNAME OF PROD = 'LESSONXX' *IF XX MEMBER

 MOVE NEW TO MEMNAME OF PROD. * Y-REPLACE NAME

 SCANTEST PROD FOR 'SYSDA' *SCAN FOR SYSDA

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD * Y-PRINT BEFORE IMAGE

 EDIT 'TSTAU2' TO UNIT * Y-REPLACE VALUE

 PRINT PROD. * Y-PRINT REPLACED REC

 WRITEPDS LIBOUT FROM PROD. *OUTPUT MEMBER RECORD

 GOTO LOOP. *LOOP FOR MORE
Purpose:
This sample shows the scan/replace ability by using the SCANTEST verb and the EDIT verb with LOC defined as the destination of the moved data.

Expected results:
The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
EAGLER01 COMMAND EDIT LIST

e)
EAGLER02 PRINT LIST

f)
EAGLER08 STATISTICS LIST

Points to observe:
This sample uses the scan location pointer to replace data. To replace data of unequal sizes, refer to lesson 3.

When the READPDS verb is issued, Eagle88 builds its own directory list based on the FOR clause specified. Members are started and processed from this list until all records on all the members have been processed.

You can output these member records to another PDS file by requesting a WRITEPDS. The member name currently being processed on the input file will be the output's member name. You can rename the member name by resetting (before each WRITEPDS) the input's MEMNAME control area. This new value might come from a literal or possibly from the data record itself.

For more information see the reference section WRITEPDS and related samples.

Lesson 8, Xref source code
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON08).

//LESSON8 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.CTLCARD1,DISP=SHR

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READPDS PROD FOR LSN008**. *READ ALL LESSON8 MEMBERS

 XREF PROD. *XREF DATA NAMES

 GOTO LOOP. *LOOP FOR MORE

/*

//
Purpose:
This sample demonstrates the data name cross reference facility. All names containing a dash (-) or underscore (_) will be considered a data name.

Expected results:
The report printed has several parts.

a)
EAGLER01 COMMAND EDIT LIST

b)
EAGLER07 XREF LIST

c)
EAGLER08 STATISTICS LIST

Points to observe:
The XREF verb releases the given record to the cross reference facility each time it is requested. When the job has reached end of file, the cross reference facility sorts and reports the data names in alphabetic order.

The XREF verb is like other verbs in that you can exclude records, members, and even modify data prior to releasing the record to the cross reference facility.
Lesson 9, File compares
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON09).

//LESSON9 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.DATA(LSN009A),DISP=SHR

//TEST DD DSN=SYSTECH.V7TUTOR.DATA(LSN009B),DISP=SHR

//SYSIN DD *

* FILE COMPARE *

LOOP READ PROD. *READ PROD FILE

 READ TEST. *READ TEST FILE

 PRINT PROD. *DISPLAY FILE

 PRINT TEST. *DISPLAY FILE

 MOVE ' ' TO (F=PROD,P=41,L=6). *EXCLUDE DATE FIELD

 MOVE ' ' TO (F=TEST,P=41,L=6). *EXCLUDE DATE FIELD

 COMPARE PROD TO TEST. *COMPARE FILES

 GOTO LOOP. *GET MORE
Purpose:
This sample illustrates the COMPARE verb with field exclusion.

Expected results:
The report printed has several parts.

a)
EAGLER01 COMMAND EDIT LIST

b)
EAGLER05 COMPARE LIST

c)
EAGLER08 STATISTICS LIST

Points to observe:
The COMPARE facility receives two records and compares byte for byte between the records. Those records that are different will print in a vertical dump format. Under the second record, an "=" will print for bytes that are equal. An "*" will print for bytes that are different.

You may exclude certain fields from your compare by simply blanking out the area in both records. This is a most useful technique to get rid of unimportant differences such as dates, sequence numbers, data base location keys, etc.
Lesson 10, Synchronized file compares
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON10).

//LESSON10 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//PROD DD DSN=SYSTECH.V7TUTOR.DATA(LSN010A),DISP=SHR

//TEST DD DSN=SYSTECH.V7TUTOR.DATA(LSN010B),DISP=SHR

//SYSIN DD *

* FILE COMPARE SYNC *

KEY1 DEFINES (F=PROD,P=5,L=3) *KEY

KEY2 DEFINES (F=TEST,P=5,L=3) *KEY

LOOP SYNC KEY1 KEY2. *READ PROD FILE

 PRINT PROD. *LIST FILE

 PRINT TEST. *LIST FILE

 COMPARE PROD TO TEST. *COMPARE FILES

 GOTO LOOP. *GET MORE

/*

//
Purpose:
This sample shows how file matching, as illustrated in lesson 4, can be applied to file compares.

Expected results:
The report printed has several parts.

a)
EAGLER01 COMMAND EDIT LIST

b)
EAGLER02 PRINT LIST

c)
EAGLER05 COMPARE LIST

d)
EAGLER08 STATISTICS LIST

Points to observe:

The SYNC verb keeps the record sets together to show those records added and deleted from the file. The message "FILE NOT AVAILABLE OR IS EOF" indicates such gaps. Changes print with the highlighted differences.

Lesson 11, Library compares
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON11).

//LESSON11 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//before DD DSN=SYSTECH.V7TUTOR.CTLCARD1,DISP=SHR

//after DD DSN=SYSTECH.V7TUTOR.CTLCARD2,DISP=SHR

//SYSIN DD *

* comprehensive library compare *

hold DEFINES C'AAAAAAAA' *hold member

high DEFINES C'ZZZZZZZZ' *high member

seqb DEFINES (F=before,P=72,L=9) *seq num

seqa DEFINES (F=after,P=72,L=9) *seq num

eof DEFINES 'Y' *eof ind

empty DEFINES 'E' *empty ind

present DEFINES 'P' *present ind

holdind DEFINES 'Y' *file ind

 READPDS before FOR LSN011** *init reads

 READPDS after FOR LSN011** *

loop IF RECORDSW OF before = eof *if eof set high

 MOVE high TO MEMNAME OF before. *

 IF RECORDSW OF after = eof *

 MOVE high TO MEMNAME OF after. *

 IF MEMNAME OF before = MEMNAME OF after

 IF MEMNAME OF before = hold *

 MOVE ' ' TO seqb *if same member

 MOVE ' ' TO seqa * then clear seq

 LOADSRC before after * load and read

 READPDS before FOR LSN011** * next records

 READPDS after FOR LSN011** *

 GOTO loop. *

 IF MEMNAME OF before > hold *if member done

 IF MEMNAME OF after > hold * then request

 COMPSRC * a compare

 GOTO reset. * and reset hold

 IF MEMNAME OF before = hold *if before not

 GOTO loadb. * done finish it

 IF MEMNAME OF after = hold *if after not

 GOTO loada. * done finish it

 GOTO loop.

 *

loadb MOVE RECORDSW OF after TO holdind *save current ind

loadbl IF MEMNAME OF before = hold *if finishing member

 MOVE empty TO RECORDSW OF after * set other file empty

 MOVE ' ' TO seqb * clear seq number

 LOADSRC before after * load record

 MOVE holdind TO RECORDSW OF after * reset ind

 READPDS before FOR LSN011** * read another

 GOTO loadbl. * loop until done

 COMPSRC. *request compare

 GOTO reset. *

loada MOVE RECORDSW OF before TO holdind *save current ind

loadal IF MEMNAME OF after = hold *if finishing member

 MOVE empty TO RECORDSW OF before * set other file empty

 MOVE ' ' TO seqa * clear seq number

 LOADSRC before after * load record

 MOVE holdind TO RECORDSW OF before * reset ind

 READPDS after FOR LSN011** * read another rec

 GOTO loada. * loop until done

 COMPSRC. *request compare

 GOTO reset. *

reset IF MEMNAME OF before = MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before < MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before > MEMNAME OF after

 MOVE MEMNAME OF after TO hold.

 GOTO loop.

Purpose:
This sample compares library members that have identical names.

Expected results:

a)
EAGLER01 COMMAND EDIT LIST showing commands used

b)
EAGLER06 SOURCE CODE COMPARE showing differences

c)
EAGLER08 STATISTICS LIST showing counts

Points to observe:

This sample will re-coordinate records between members. You will find it useful to exclude sequence numbers and possibly use a scan/replace to blank out known changes such as data name prefixes, test vs. prod disk packs...etc.
Lesson 12, Formatting special requests
Submit the following JCL from SYSTECH.V7TUTOR.CNTL(LESSON12).

//LESSON12 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC EAGLE88

//FILEIN DD DSN=SYSTECH.V7TUTOR.CNTL,DISP=SHR

//DISPLAY DD SYSOUT=A,DCB=(LRECL=88,RECFM=FBA,BLKSIZE=88)

//SYSIN DD *

* SEND JCL TO PRINTER WITH PAGE EJECTS

PRTREC DEFINES (FILE=WORKAREA,POS=2,LEN=80) *JCL STATEMENT

PRTCC DEFINES (FILE=WORKAREA,POS=1,LEN=1) *CARRIAGE CONTROL

PRTSEQ DEFINES (FILE=WORKAREA,POS=73,LEN=8) *MEMBER NAME

PRTMEM DEFINES (FILE=WORKAREA,POS=81,LEN=8) *MEMBER NAME

MEMWORK DEFINES (FILE=WORKAREA,POS=200,LEN=8) *HOLD MEMBER NAME

JCLREC DEFINES (FILE=FILEIN,POS=1,LEN=80) *SOURCE JCL STMT

LOOP READPDS FILEIN FOR LESSON**. *READ MEMBERS

 IF MEMNAME OF FILEIN = 'LESSONXX' *IF LESSONXX

 GOTO LOOP. *YES-SKIP MEMBER

 MOVE ' ' TO PRTCC. *SET CC= ONE LINE

 IF MEMNAME OF FILEIN NOT = MEMWORK *IF NEW MEMBER

 MOVE MEMNAME OF FILEIN TO MEMWORK * Y-RESET MEM HOLD

 MOVE '1' TO PRTCC. * -SET EJECT

 MOVE JCLREC TO PRTREC. *MOVE JCL STMT

 MOVE ' ' TO PRTSEQ. *CLEAR SEQ NUM

 MOVE MEMNAME OF FILEIN TO PRTMEM. *EXTRA INFO

 WRITE DISPLAY FROM WORKAREA. *OUTPUT FORM WORK

 GOTO LOOP. *GET MORE

/*
Purpose:
This sample inputs a PDS file containing JCL members and sends it to the printer. Page ejects occur when member name changes. The PDS could likewise contain documentation or test input members.

Expected results:
The report printed has several parts:.

a)
EAGLER01 COMMAND EDIT LIST

b)
EAGLER08 STATISTICS LIST

c)
DISPLAY sysout with page ejects

Points to observe:
Our processing approach is to read all records for the members prefixed by "LESSON". The "LESSONXX" member records will be skipped. For the remaining members, records will be moved one at a time to a workarea offset one byte for carriage control. A page eject value of "1" will be set whenever a new member is started and the member name will printed on the side for every record.

The output file DISPLAY is defined 8 bytes larger than the input which will accommodate the member name. Eagle88's output file size and format are determined by the DCB information on the JCL.

Tutorial conclusion:
This completes your tutorial lessons. We hope you feel comfortable with Eagle88's syntax and proc​ess concepts. The user manual contains many samples collected over the past few years. We are always looking for new approaches and solutions so please, send us your samples.

Section G - INSTALLATION GUIDE

Step 1.

Get files from the Web to your PC to the Mainframe
Download Eagle88 v7.04 zip file from the website www.eagle88.com Either Windows or Apple Mac, expand the zip file to download 9 files. They are labeled F1- through F9- for short reference.

Unzipped files:

A1-ReadMe.txt

F1-SYSTECH-EAGLV704-CNTL-XMIT

F2-SYSTECH-EAGLV704-DBRMLIB-XMIT

F3-SYSTECH-EAGLV704-LOADLIB-XMIT

F4-SYSTECH-EAGLV704-OBJLIB-XMIT

F5-SYSTECH-EAGLV704-PROCLIB-XMIT

F6-SYSTECH-EAGL7TUT-CNTL-XMIT

F7-SYSTECH-EAGL7TUT-CTLCARD1-XMIT

F8-SYSTECH-EAGL7TUT-CTLCARD2-XMIT

F9-SYSTECH-EAGL7TUT-DATA-XMIT

M1-Eagle88UserManualV74.doc
These XMIT files are binary image. Upload them back to the mainframe as binary. We are using the XMIT / RECEIVE method to rebuild the PDS.

As an example, the original name for F1 is SYSTECH.EAGLV704.CNTL. The dash (-) is replacing the dot (.) naming scheme.

Step 2.

Pre-allocate the XMIT files on the Mainframe side
To bring F1 file back, you need to pre-allocate SYSTECH.EAGLV704.CNTL.XMIT as a lrecl=80, blksize=3120, DSORG=PS. Must be this block size and lrecl or the RECEIVE command will fail.

Example JCL below. Change the SYSTECH name to your company/project/userid name. Using ISPF allocation instead of the JCL is fine too

SYSTECH.EAGLV704.CNTL(ALLOC4)

//SYSTECHA JOB (123),'SYSTECH',CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),

// NOTIFY=SYSTECH

//**

//** ALLOCATE 9 FILES AS 80/3120/PS FOR THE BINARY FILES **

//** *************

//ALLOC1 EXEC PGM=IEFBR14

//F1 DD DSN=SYSTECH.EAGLV704.CNTL.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F2 DD DSN=SYSTECH.EAGLV704.DBRMLIB.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F3 DD DSN=SYSTECH.EAGLV704.LOADLIB.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(50,10),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F4 DD DSN=SYSTECH.EAGLV704.OBJLIB.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F5 DD DSN=SYSTECH.EAGLV704.PROCLIB.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F6 DD DSN=SYSTECH.EAGL7TUT.CNTL.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F7 DD DSN=SYSTECH.EAGL7TUT.CTLCARD1.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F8 DD DSN=SYSTECH.EAGL7TUT.CTLCARD2.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

//F9 DD DSN=SYSTECH.EAGL7TUT.DATA.XMIT,

// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,SPACE=(TRK,(5,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DSORG=PS)

 Step 3.
FTP the XMIT files from your PC to the Mainframe
FTP the XMIT files to the pre-allocate XMIT files you just built. Make sure use set binary mode before the put commands.

FTP 11.234.5.789 <<== your ftp IP address

FTP> USERID

FTP> PW

FTP> BIN

FTP> put F1-SYSTECH-EAGLV704-CNTL-XMIT 'SYSTECH.EAGLV704.CNTL.XMIT'

FTP> put F2-SYSTECH-EAGLV704-DBRMLIB-XMIT 'SYSTECH.EAGLV704.DBRMLIB.XMIT'

FTP> put F3-SYSTECH-EAGLV704-LOADLIB-XMIT 'SYSTECH.EAGLV704.LOADLIB.XMIT'

FTP> put F4-SYSTECH-EAGLV704-OBJLIB-XMIT 'SYSTECH.EAGLV704.OBJLIB.XMIT'

FTP> put F5-SYSTECH-EAGLV704-PROCLIB-XMIT 'SYSTECH.EAGLV704.PROCLIB.XMIT'

FTP> put F6-SYSTECH-EAGL7TUT-CNTL-XMIT 'SYSTECH.EAGL7TUT.CNTL.XMIT'

FTP> put F7-SYSTECH-EAGL7TUT-CTLCARD1-XMIT 'SYSTECH.EAGL7TUT.CTLCARD1.XMIT'

FTP> put F8-SYSTECH-EAGL7TUT-CTLCARD2-XMIT 'SYSTECH.EAGL7TUT.CTLCARD2.XMIT'

FTP> put F9-SYSTECH-EAGL7TUT-DATA-XMIT 'SYSTECH.EAGL7TUT.DATA.XMIT'
Browse each file sent on the mainframe and see if the allocations are still correct and the transmit did fill in the file.

The files contain the following:

F1 is typical test jcl, just misc eagle88 runs.

F2 contains Eagle19 DBRM object code to bind Eagle88 to the DB2 environment. This is a later step to perform if needed.

F3 contains the EAGLE88C load module.

F4 contains the OBJLIB that build the EAGLE88C load module. A link step is later performed using this file.

F5 contains PROCLIB the EAGLE88 procs.

F6 Contains Tutorial jcl for lessons. Later you will update the JCL for a valid job card and the company file naming scheme.

F7 contains Tutorial Ctlcard lib1 for test cases

F8 contains Tutorial Ctlcard lib2 for test cases

F9 contains Tutorial data for test cases

Step 4.

Rebuild the PDS using the RECEIVE command
Rebuild the 9 PDS files using the RECEIVE command. Change the output files to match the company naming scheme.

Example to change on each job step:

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.CNTL.XMIT

//SYSTSIN DD *

 RECEIVE INDDNAME(RECVDSN)

 DSNAME('SYSTECH.EAGLV704.CNTL')
For reference SYSTECH.EAGLV704.CNTL(AXMIT4) contains the following JCL.

If you run the first job steps for F1, these JCL members are inside the CNTL file.

//SYSTECHD JOB (123),'SYSTECH',CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1), 00010000

// NOTIFY=SYSTECH 00020000

//PLIB JCLLIB ORDER=(SYSTECH.EAGLV704.PROCLIB) 00030000

//*** 00040000

//* 00050000

//* RELOAD THE XMIT FILE TO WHICH EVER COMPANY NAME NEEDED 00060000

//* 00070000

//* THIS EXAMPLE CHANGES FROM EAGLV704 CHANGED EAGLV704 00080000

//* EAGL7TUT EAGL7TUT 00090000

//*** 00100000

//* F1-SYSTECH.EAGLV704.CNTL 00110000

//* F2-SYSTECH.EAGLV704.DBRMLIB 00120000

//* F3-SYSTECH.EAGLV704.LOADLIB 00130000

//* F4-SYSTECH.EAGLV704.OBJLIB 00140000

//* F5-SYSTECH.EAGLV704.PROCLIB 00150000

//* F6-SYSTECH.EAGL7TUT.CNTL 00160000

//* F7-SYSTECH.EAGL7TUT.CTLCARD1 00170000

//* F8-SYSTECH.EAGL7TUT.CTLCARD2 00180000

//* F9-SYSTECH.EAGL7TUT.DATA 00190000

//* 00200000

//* 00210000

//*SCRATCH XMIT WORK FILE 00220000

//*** 00230000

//DELF1 EXEC PGM=IEFBR14 00240000

//XMITDS DD DSN=SYSTECH.EAGLV704.CNTL, 00250000

// DISP=(MOD,DELETE,DELETE), 00260000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 00270000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 00280000

//*** 00290000

//* F1 RELOAD XMIT CNTL RECEIVED 00300000

//*** 00310000

//XMITF1 EXEC PGM=IKJEFT01 00320000

//SYSPRINT DD SYSOUT=* 00330000

//SYSTSPRT DD SYSOUT=* 00340000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.CNTL.XMIT 00350000

//SYSTSIN DD * 00360000

 RECEIVE INDDNAME(RECVDSN) 00370000

 DSNAME('SYSTECH.EAGLV704.CNTL') 00380000

//* 00390000

//*SCRATCH XMIT WORK FILE 00400000

//*** 00410000

//DELF3 EXEC PGM=IEFBR14 00420000

//XMITDS DD DSN=SYSTECH.EAGLV704.DBRMLIB, 00430000

// DISP=(MOD,DELETE,DELETE), 00440000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 00450000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 00460000

//*** 00470000

//* F2 RELOAD XMIT DBRMLIB RECEIVED 00480000

//*** 00490000

//XMITF2 EXEC PGM=IKJEFT01 00500000

//SYSPRINT DD SYSOUT=* 00510000

//SYSTSPRT DD SYSOUT=* 00520000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.DBRMLIB.XMIT 00530000

//SYSTSIN DD * 00540000

 RECEIVE INDDNAME(RECVDSN) 00550000

 DSNAME('SYSTECH.EAGLV704.DBRMLIB') 00560000

//* 00570000

//* 00580000

//*SCRATCH XMIT WORK FILE 00590000

//*** 00600000

//DELF3 EXEC PGM=IEFBR14 00610000

//XMITDS DD DSN=SYSTECH.EAGLV704.LOADLIB, 00620000

// DISP=(MOD,DELETE,DELETE), 00630000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 00640000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 00650000

//*** 00660000

//* F3 RELOAD XMIT LOADLIB RECEIVED 00670000

//*** 00680000

//XMITF3 EXEC PGM=IKJEFT01 00690000

//SYSPRINT DD SYSOUT=* 00700000

//SYSTSPRT DD SYSOUT=* 00710000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.LOADLIB.XMIT 00720000

//SYSTSIN DD * 00730000

 RECEIVE INDDNAME(RECVDSN) 00740000

 DSNAME('SYSTECH.EAGLV704.LOADLIB') 00750000

//* 00760000

//*SCRATCH XMIT WORK FILE 00770000

//*** 00780000

//DELF4 EXEC PGM=IEFBR14 00790000

//XMITDS DD DSN=SYSTECH.EAGLV704.OBJLIB, 00800000

// DISP=(MOD,DELETE,DELETE), 00810000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 00820000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 00830000

//*** 00840000

//* F4 RELOAD XMIT OBJLIB RECEIVED 00850000

//*** 00860000

//XMITF4 EXEC PGM=IKJEFT01 00870000

//SYSPRINT DD SYSOUT=* 00880000

//SYSTSPRT DD SYSOUT=* 00890000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.OBJLIB.XMIT 00900000

//SYSTSIN DD * 00910000

 RECEIVE INDDNAME(RECVDSN) 00920000

 DSNAME('SYSTECH.EAGLV704.OBJLIB') 00930000

//* 00940000

//*SCRATCH XMIT WORK FILE 00950000

//*** 00960000

//DELF5 EXEC PGM=IEFBR14 00970000

//XMITDS DD DSN=SYSTECH.EAGLV704.PROCLIB, 00980000

// DISP=(MOD,DELETE,DELETE), 00990000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 01000000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 01010000

//*** 01020000

//* F5 RELOAD XMIT PROCLIB RECEIVED 01030000

//*** 01040000

//XMITF5 EXEC PGM=IKJEFT01 01050000

//SYSPRINT DD SYSOUT=* 01060000

//SYSTSPRT DD SYSOUT=* 01070000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGLV704.PROCLIB.XMIT 01080000

//SYSTSIN DD * 01090000

 RECEIVE INDDNAME(RECVDSN) 01100000

 DSNAME('SYSTECH.EAGLV704.PROCLIB') 01110000

//*SCRATCH XMIT WORK FILE 01120000

//*** 01130000

//DELF6 EXEC PGM=IEFBR14 01140000

//XMITDS DD DSN=SYSTECH.EAGL7TUT.CNTL, 01150000

// DISP=(MOD,DELETE,DELETE), 01160000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 01170000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 01180000

//*** 01190000

//* F6 RELOAD XMIT TUTORIAL CNTL RECEIVED 01200000

//*** 01210000

//XMITF6 EXEC PGM=IKJEFT01 01220000

//SYSPRINT DD SYSOUT=* 01230000

//SYSTSPRT DD SYSOUT=* 01240000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGL7TUT.CNTL.XMIT 01250000

//SYSTSIN DD * 01260000

 RECEIVE INDDNAME(RECVDSN) 01270000

 DSNAME('SYSTECH.EAGL7TUT.CNTL') 01280000

//* 01290000

//*** 01300000

//*SCRATCH XMIT WORK FILE 01310000

//*** 01320000

//DELF7 EXEC PGM=IEFBR14 01330000

//XMITDS DD DSN=SYSTECH.EAGL7TUT.CTLCARD1, 01340000

// DISP=(MOD,DELETE,DELETE), 01350000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 01360000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 01370000

//*** 01380000

//* F7 RELOAD XMIT TUTORIAL CTLCARD1 RECEIVED 01390000

//*** 01400000

//XMITF7 EXEC PGM=IKJEFT01 01410000

//SYSPRINT DD SYSOUT=* 01420000

//SYSTSPRT DD SYSOUT=* 01430000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGL7TUT.CTLCARD1.XMIT 01440000

//SYSTSIN DD * 01450000

 RECEIVE INDDNAME(RECVDSN) 01460000

 DSNAME('SYSTECH.EAGL7TUT.CTLCARD1') 01470000

//*** 01480000

//*SCRATCH XMIT WORK FILE 01490000

//*** 01500000

//DELF8 EXEC PGM=IEFBR14 01510000

//XMITDS DD DSN=SYSTECH.EAGL7TUT.CTLCARD2, 01520000

// DISP=(MOD,DELETE,DELETE), 01530000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 01540000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 01550000

//*** 01560000

//* F8 RELOAD XMIT TUTORIAL CTLCARD2 RECEIVED 01570000

//*** 01580000

//XMITF8 EXEC PGM=IKJEFT01 01590000

//SYSPRINT DD SYSOUT=* 01600000

//SYSTSPRT DD SYSOUT=* 01610000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGL7TUT.CTLCARD2.XMIT 01620000

//SYSTSIN DD * 01630000

 RECEIVE INDDNAME(RECVDSN) 01640000

 DSNAME('SYSTECH.EAGL7TUT.CTLCARD2') 01650000

//* 01660000

//*SCRATCH XMIT WORK FILE 01670000

//*** 01680000

//DELF9 EXEC PGM=IEFBR14 01690000

//XMITDS DD DSN=SYSTECH.EAGL7TUT.DATA, 01700000

// DISP=(MOD,DELETE,DELETE), 01710000

// UNIT=SYSDA,SPACE=(TRK,(50,20,20),RLSE), 01720000

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800) 01730000

//*** 01740000

//* F9 RELOAD XMIT TUTORIAL DATA RECEIVED 01750000

//*** 01760000

//XMITF9 EXEC PGM=IKJEFT01 01770000

//SYSPRINT DD SYSOUT=* 01780000

//SYSTSPRT DD SYSOUT=* 01790000

//RECVDSN DD DISP=SHR,DSN=SYSTECH.EAGL7TUT.DATA.XMIT 01800000

//SYSTSIN DD * 01810000

 RECEIVE INDDNAME(RECVDSN) 01820000

 DSNAME('SYSTECH.EAGL7TUT.DATA') 01830000

// 01840000

Step 5.

Browse each of the PDS files now recovered for content
Browse each of the 9 PDSs just built to see if they have content. If the RECEIVE commands, fails, you will get messages in the job. Problems occur if the XMIT file sent down was not pre-allocated to 80/3120/PS. Or possibly the binary ftp was not correct.

If you see members built, chances are 99.5% all is good. You don't need a detailed review.

Step 6.

Link the executable EAGLE88C composite module
Link the executable EAGLE88C composite module.

The link job in 'SYSTECH.EAGV704.CNTL(LINK88C4). Change the file names to match your naming scheme.

CC=4 is expected and acceptable. It indicates a warning on the DB2 overrides. That is normal and correct.

If LINK fails badly, check the OBJLIB for damaged members, call if you have issues. I am guessing your FTP didn't come in clean, or I sent you a bad file, or gremlins. Email jrmull@eagle88.com with questions.

If the link worked, chances are 99.6% all is good.

//***

//*Link the EAGLE88c load module using the following JCL. *

//***

//LINK1 EXEC PGM=HEWL,PARM='LIST,LET,XREF,CALL,AMODE=31,RMODE=24'

//SYSLIB DD DSN=company.EAGLV704.LOADLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,10))

//SYSPRINT DD SYSOUT=*

//SYSLMOD DD DSN=SYSTECH.EAGLV704.LOADLIB,DISP=SHR

//SYSLIN DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE01),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE02),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE03),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE04),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE05),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE06),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE07),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE08),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE09),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE10),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE11),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE11T),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE12),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE13),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE14),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE15),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE16),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE17),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE18),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE19),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(EAGLE20),DISP=SHR

// DD DSN=SYSTECH.EAGLV704.OBJLIB(IDMSTABL),DISP=SHR

// DD DDNAME=SYSIN

//SYSIN DD *

 ENTRY EAGLE01

 INCLUDE SYSLIB(DSNTIAR)

 INCLUDE SYSLIB(DSNHLI)

 INCLUDE SYSLIB(IEFBR14)

 NAME EAGLE88C(R)

/*
Step 7.

Optional, for IDMS Database users.
Optional...If you have IDMS, Run LINKIDMS using this JCL line to allow IDMS database usage.

Locate the IDMS link job in 'SYSTECH.EAGV704.CNTL(LINKIDMS).

//install JOB (12345,12345),'PROGRAMMER',CLASS=A,MSGCLASS=A

//LINK4 EXEC PGM=HEWL,PARM='LIST,LET,XREF,CALL,AMODE=31,RMODE=24'

//*****************************

//* LINK CA-DATACOM WORKEAGLE *

//*****************************

//SYSLIB DD DSN=COMPANY.EAGLV704.LOADLIB,DISP=SHR

// DD DSN=COMPANY.datacom.modules,DISP=SHR

// DD DSN=SYS1.LINKLIB,DISP=SHR

// DD DSN=SYS1.RESLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,10))

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=COMPANY.LOADLIB,DISP=SHR

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD *

 INCLUDE SYSLIB(DBURINF1)

 INCLUDE SYSLIB(EAGLE88C)

 ENTRY BEGIN

 NAME EAGLEDB(R)

//
Step 8.

Optional DB2 Bind for DB2 users

Optional...If you have DB2, Run this DBRM bind allow DB2 database usage. The DB2 Bind for EAGLE19 module in 'SYSTECH.EAGV704.CNTL(DB2BIND4).

If your bind succeeds, chances are 99.7% all is good.

//SYSTECHD JOB (123),'SYSTECH',CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),

// NOTIFY=SYSTECH

//PLIB JCLLIB ORDER=(SYSTECH.EAGLV704.PROCLIB)

//***

//* DB2 BIND JCL FOR PROGRAM EAGLE19

//* PLAN SYSTECHA, SYSTECHB, SYSTECHC, SYSTECHD

//***

//BIND EXEC PGM=IKJEFT01

//STEPLIB DD DISP=SHR,DSN=DSNA10.DBAG.SDSNEXIT

// DD DISP=SHR,DSN=DSNA10.SDSNLOAD

//DBRMLIB DD DSN=SYSTECH.EAGLV704.DBRMLIB,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM (DBAG)

 BIND MEMBER (EAGLE19) -

 PLAN (SYSTECHA) -

 ACTION (REP) -

 ISOLATION (CS) -

 VALIDATE (BIND) -

 RELEASE (COMMIT) -

 OWNER (SYSTECH) -

 QUALIFIER (SYSTECH) -

 ENCODING (1047)

 END

 /*

Another illustration sample: (talk to your DBA for advice)

//***

//* db2 bind information

//***

 DSN SYSTEM(DB2T)

 BIND PLAN (EAGLE19) -

 LIBRARY(your.COMPANY.lib) ACTION(REPLACE) RETAIN -

 EXPLAIN(NO) VALIDATE(BIND) ISOLATION(CS) -

 ACQUIRE(USE) RELEASE(COMMIT)

 END
Step 9.

Proc setups
Review each member in 'SYSTECH.EAGV704.PROCLIB' and change the LOADLIB name to match your company naming scheme. DB2 usage needs your DSNLOADs

//EAGLE88 PROC RGN=4M,ERRORS=

//**

//* EXEC EAGLE88 UTILITY *

//**

//RUNEAGL EXEC PGM=EAGLE88C,PARM=&ERRORS,REGION=&RGN

//STEPLIB DD DSN=SYSTECH.EAGLV704.LOADLIB,DISP=SHR

// DD DSN=DSNA10.SDSNLOAD,DISP=SHR

// DD DSN=DSNA10.DBAG.SDSNEXIT,DISP=SHR

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,BLKSIZE=6000,RECFM=VB)

//EAGLECMD DD DDNAME=SYSIN

//* PEND

Optional, create this EAGLE88 proc for IMS usages:

//EAGLEIMS PROC RGN=4M,PSB=

//**

//* EXEC EAGLE88 UTILITY FOR IMS *

//**

//EAGLEIMS EXEC PGM=DFSRRC00,REGION=&RGN,

// PARM='DLI,EAGLE88C,&PSB'

//STEPLIB DD DSN=COMPANY.EAGLV704.LOADLIB,DISP=SHR

// DD DSN=COMPANY.ims.reslib,DISP=SHR

// DD DSN=COMPANY.ims.modlib,DISP=SHR

//IMS DD DSN=COMPANY.ims.pgmlib,DISP=SHR

//DFSVSAMP DD DSN=COMPANY.ctlcard(bufdef),DISP=SHR

//IEFRDER DD DUMMY

//SYSPRINT DD SYSOUT=*

//DFSSTAT DD DUMMY

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133.LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,BLKSIZE=6000,RECFM=VB)

//EAGLECMD DD DDNAME=SYSIN

//* PEND
Optional, create this EAGLE88 proc for IDMS usages:

//EAGLEDB PROC RGN=4M,URT='XXXXXXXX'

//**

//* EXEC WORKEAGLE UTILITY FOR CA-DATACOM *

//**

//EAGLEDB EXEC PGM=EAGLEDB,PARM='URT=&URT',REGION=&RGN

//STEPLIB DD DSN=COMPANY.EAGVL704.LOADLIB,DISP=SHR

// DD DSN=COMPANY.urt.LOADLIB,DISP=SHR

// DD DSN=COMPANY.db.LOADLIB,DISP=SHR

//EAGLER01 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER02 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER03 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER04 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER05 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER06 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER07 DD SYSOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)

//EAGLER08 DD SYSOUT=*,DCB=(BLKSIZE=133.LRECL=133,RECFM=FBA)

//EAGLEWRD DD DUMMY,DCB=(LRECL=34,BLKSIZE=6000,RECFM=VB)

//EAGLECMD DD DDNAME=SYSIN

//* PEND
Step 10.
Run TESTPRT from the provided JCL lib

Run TESTPRT from the provided JCL CNLT lib. Return code = 0 should occur. If this job runs, chances are 100% all is good.

SYSTECH.EAGLV704.CNTL(TESTPRT)

//SYSTECH1 JOB (123),'SYSTECH',CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),

// NOTIFY=SYSTECH

//PLIB JCLLIB ORDER=(COMPANY.EAGVL704.PROCLIB) <<<change this to match your name

//STEP001 EXEC EAGLE88

//IN DD *

REC1

REC2

REC3

//SYSIN DD *

* EAGLE88 COMMANDS *

LOOP READ IN

 PRINT IN

 DUMP IN

 DUMPH IN

 GOTO LOOP.

/*

//

Step 11.
Tutorial test job setup
The User manual has a Tutorial section with 12 lessons. The test data and JCL are prebuilt and stored in the "Tutorial" files.

A valid job card needs to be pasted in and file names matching your company naming scheme is needed. Each job will execute with cc=0 and provide useful reports for the students.

WRAPUP.

Comments and suggestions requested
Your comments and corrections are welcome to make this install easier. Feel free to email a specific business task you would like to perform. I will return with a possible solution using Eagle88.

Regards

John Mull

630-759-4805

jrmull@eagle88.com

Section H – SAMPLE REPORTS
EAGLER01 – COMMAND EDIT LIST
EAGLER01 COMMAND EDIT LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.37.37 DATE: 01/26/24

VERSION 7.04

EAG0200- ************************ REQUEST ACCEPTED

EAG0200- * EAGLE88 COMMANDS * REQUEST ACCEPTED

EAG0200- ************************ REQUEST ACCEPTED

EAG0200- LOOP READ A REQUEST ACCEPTED

EAG0200- PRINT A REQUEST ACCEPTED

EAG0200- DUMP A REQUEST ACCEPTED

EAG0200- DUMPH A REQUEST ACCEPTED

EAG0200- GOTO LOOP. REQUEST ACCEPTED

EAGLER01 *** END OF REPORT ***

EAGLER02 – FILE PRINT LIST
EAGLER02 FILE PRINT LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.37.37 DATE: 01/26/24

VERSION 7.04

 DATA SET: SYSTECH.SYSTECH1.JOB06954.D0000101.? VOL=SER: TYPE: QSAM FB DATE: 01/26/24

 +....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....10

 1 REC1 * ... 80 A

 2 REC2 * ... 80 A

 3 REC3 * ... 80 A

EAGLER02 *** END OF REPORT ***
EAGLER03 – VERTICAL DUMP LIST
EAGLER03 VERTICAL DUMP LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.37.37 DATE: 01/26/24

VERSION 7.04

 DATA SET: SYSTECH.SYSTECH1.JOB06954.D0000101.? VOL=SER: TYPE: QSAM FB DATE: 01/26/24

 +....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....10

 1 REC1 80 A

 DCCF44

 953100

 2 REC2 80 A

 DCCF44

 953200

 3 REC3 80 A

 DCCF44

 953300

EAGLER03 *** END OF REPORT ***
EAGLER04 – HORIZONTAL DUMP LIST
EAGLER04 HORIZONTAL DUMP LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.37.37 DATE: 01/26/24

VERSION 7.04

 DATA SET: SYSTECH.SYSTECH1.JOB06954.D0000101.? VOL=SER: TYPE: QSAM FB DATE: 01/26/24

 1 D9C5C3F1 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *REC1 * A

 0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 0040 40404040 40404040 40404040 40404040 * *

 2 D9C5C3F2 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *REC2 * A

 0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 0040 40404040 40404040 40404040 40404040 * *

 3 D9C5C3F3 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *REC3 * A

 0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 0040 40404040 40404040 40404040 40404040 * *

EAGLER04 *** END OF REPORT ***

EAGLER05 – COMPARE LIST
EAGLER05 COMPARE LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.55.18 DATE: 01/26/24

VERSION 7.04

 +....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....10

 4 678 322C RXE SILV 8512 000027 781111 133462 56 XX 04300 80 PROD

 FFF4FFFC4DEC4ECDE4FFFF4FFFFFF4444FFFFFF44444444FFFFFF4FF4EE44FFFFF44444444444444

 67803223097502935085120000027000078111100000000133462056077000430000000000000000

 4 678 322C RXE SILV 8512 000027 781111 133462 56 ZZ 04300 80 TEST

 FFF4FFFC4DEC4ECDE4FFFF4FFFFFF4444FFFFFF44444444FFFFFF4FF4EE44FFFFF44444444444444

 67803223097502935085120000027000078111100000000133462056099000430000000000000000

 ===**=====================

 6 678 567C RXE SILV 8512 000027 781111 936008 56 XX 00500 80 PROD

 FFF4FFFC4DEC4ECDE4FFFF4FFFFFF4444FFFFFF44444444FFFFFF4FF4EE44FFFFF44444444444444

 67805673097502935085120000027000078111100000000936008056077000050000000000000000

 6 678 567C RXE SILV 8512 006027 781561 936008 56 ZZ 00500 80 TEST

 FFF4FFFC4DEC4ECDE4FFFF4FFFFFF4444FFFFFF44444444FFFFFF4FF4EE44FFFFF44444444444444

 67805673097502935085120006027000078156100000000936008056099000050000000000000000

 =========================*==========**===================**=====================

EAGLER05 *** END OF REPORT ***

EAGLER06 – COMPARE SOURCE CODE
EAGLER06 COMPARE SOURCE CODE EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 21.10.05 DATE: 01/26/24

VERSION 7.04

 OLD VS NEW +....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 SPLIT MESSAGE DDNAME MEMNAME

 0 173 * CHANGED RECORD 00017200..27 ADDED B B

EAGLER06 *** END OF REPORT ***

EAGLER07 - CROSS REFERENCE
EAGLER07 CROSS REFERENCE EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

 COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.49.48 DATE: 01/26/24

 VERSION 7.04

DATA ELEMENT NAME MEMBER - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - -10 -

 DSNA10.DBAG.SDSNEXIT ASMIDMS 29 33

 ASMREG 27 31

 ASM11T 29 33

 LINK88C4 11

 LINK88T 11

 DSNA10.SDSNLOAD ASMIDMS 28 32

 ASMREG 26 30

 ASM11T 28 32

 ASM19 10 51 55

 BIND19 9

 LOADDAT 69

 SYSTECH.DST.EAGLV704.OBJLIB LOADDAT 81

 SYSTECH.DST.EAGLV704.OBJLIB.SEQ LOADALC 77 155

 LOADDAT 79

 SYSTECH.DST.EAGLV704.PROCLIB LOADDAT 51

 SYSTECH.DST.EAGLV704.PROCLIB.SEQ LOADALC 49 127

 SYSTECH.EAGLV70R.PROCLIB AXMITR 93

 SYSTECH.EAGLV70R.PROCLIB.XMIT ALLOCF 19 51

 SYSTECH.V7TUTOR.DATA UNLDEAG 97

 SYSTECH.V7TUTOR.DATA.SEQ UNLDEAG 90 98

 SYSTECH.XMIT.SEQ XMITOBJ 9 19

 SYS1.LINKLIB ASMDST 8

 ASMIDMS 30

 SYS1.MACLIB ASMIDMS 13

 ASMREG 13

 ASM11T 13

 ASM19 16 37

 SYS1.MODGEN ASMIDMS 12

 ASMREG 12

 ASM11T 12

 ASM19 15 36

EAGLER07 *** END OF REPORT ***
EAGLER08 – STATISTICS LIST
EAGLER08 STATISTICS LIST EAGLE88 PROGRAMMER PRODUCTIVITY AID FRIDAY PAGE: 1

COPYRIGHT 2023 SYSTECH SYSTECH SOFTWARE PRODUCTS, INC. TIME: 20.37.37 DATE: 01/26/24

VERSION 7.04

 FILE INPUT OUTPUT DELETE EOF TYPE FILE NAME LENGTH BLKSIZE VOL=SER

 A 3 0 0 Y QSAM FB SYSTECH.SYSTECH1.JOB06954.D0000101.? 80 80

 PRINT 3

 DUMP VT 3

 DUMP HT 3

 COMPARE ATTEMPTS 0

 COMPARED NOT EQ 0

 SOURCE COMPARED 0

 SOURCE NOT EQUAL 0

 XREF 0

 SPELL ERRORS 0

 COMPRESS RATE 0%

EAGLER08 *** END OF REPORT ***

Copyright (c) 2023 Systech Software Products, Inc

273

